
Nao Devils Dortmund

Team Report 2010

Stefan Czarnetzki, Sören Kerner, Oliver Urbann,

Matthias Hofmann, Sven Stumm, Ingmar Schwarz

Robotics Research Institute
Section Information Technology

Contents

1 Introduction 1
1.1 Team Description . 2
1.2 Software Overview . 2

2 Motion 4
2.1 Walking . 4

2.1.1 Dortmund Walking Engine . 5
2.1.2 The ZMP/IP-Controller . 7
2.1.3 ZMP Generation . 8
2.1.4 Swinging Leg Controller . 10

2.2 Special Actions . 10
2.3 Current Research . 11

3 Cognition 14
3.1 Image Processing . 14
3.2 Line and Circle Detection . 16
3.3 Localization . 18
3.4 Current Research . 19

3.4.1 Active Vision . 19
3.4.2 Distributed Simultaneous Localization and Robot Tracking 22

4 Behavior 26
4.1 Behavior Coordinate System . 26
4.2 GoTo Motion Command . 28
4.3 Dynamic Positioning . 30
4.4 Debug Tool . 30
4.5 Current Research . 35

4.5.1 Artificial immune network and XABSL 35
4.5.2 Artificial immune network algorithm 36
4.5.3 Optimizing the parameters . 37

5 Conclusion and Outlook 38

i

A Getting Started 39
A.1 Setting up the development environment 39

A.1.1 Windows . 39
A.1.2 Linux . 41
A.1.3 Build configurations . 41

A.2 Setting up the robot . 41
A.2.1 Preparing the memory stick . 41
A.2.2 Copying your current code and configuration to the robot 42
A.2.3 Starting and stopping the robot . 42
A.2.4 How to connect with the robot and debug 43
A.2.5 Using the XABSL Debug Tool . 43

B Framework 45
B.1 Modules . 45
B.2 Representations . 46
B.3 Origin of Modules . 46

C Walking Engine Parameters 51
C.1 File walkingParams.cfg . 51
C.2 File NaoV3.m . 54

ii

Chapter 1

Introduction

Competitions such as the RoboCup provide a benchmark for the state of the art in the
field of autonomous mobile robots and provide researchers with a standardized setup to
compare their research. Additionally the RoboCup Standard Platform League does not
only provide researchers with a common setup, but also with the same hardware platform
to use. This renders increased importance to publications of those teams, since extensive
documentation and especially releasing source code allows other researchers to compare
results and methods, reuse and improve them, and to further common research goals.

In the course of this report some of the points of the robot software and current the
research approach of the RoboCup team Nao Devils are described. An overview about
the Nao Devils software is given in section 1.2. This software has been used in the
competitions in 2010 and is included in the code release that is published along with this
report1. This code release contains the complete code used by team Nao Devils during
the RoboCup 2010. Only the behavior and the tuned walking parameters are replaced
by a more basic version. Also included are the developed tools, out of which the behavior
debug tool is described in detail in section 4.4.

The following chapter of the document will describe the motion control process, em-
phasizing the Dortmund Walking Engine, which has been the first closed loop walking
engine applied to the Nao in RoboCup 2008 and 2009. The version of RoboCup 2010
has been further developed and tuned to reach walking speeds of up to 44cm/s, which
is, to our knowledge, the highest speed yet achieved with the robot Nao. Incidentally
this speed exceeds the “theoretical maximum walking speed” given by Aldebaran in an
earlier specification by almost 50%. Chapter 3 focuses on the perception processes of
the Nao, while section 4 presents the behavior specification including extensions to the
XABSL specification of previous years. In each of those chapters 2, 3 and 4 the solutions
currently in use are described in detail and further references supplied when appropriate,
but also the current research is presented. This includes concepts that were already suc-
cessfully applied and evaluated, but haven’t found their way into the competition code
for RoboCup 2010 for various reasons, as well as concepts currently under development.
Chapter 5 summarizes those current research topics and the current development process
for 2011.

The appendix provides further information and tutorials about how to set up the

1http://www.irf.tu-dortmund.de/nao-devils/download/2010/NDD-CodeRelease2010.zip

1

http://www.irf.tu-dortmund.de/nao-devils/download/2010/NDD-CodeRelease2010.zip

development environment and the robot (appendix A), use the given software frame-
work (appendix B), and about the parametrization of the presented walking engine (ap-
pendix C).

1.1 Team Description

The Nao Devils Dortmund are a RoboCup team by the Robotics Research Institute of TU
Dortmund University participating in the Standard Platform League since 2009 [1] as the
successor of team BreDoBrothers, which was a cooperation of the University of Bremen
and the TU Dortmund University [2]. The team consists of numerous undergraduate
students as well as researchers. The senior team members of Nao Devils Dortmund have
already been part of the teams Microsoft Hellhounds [3] (and therefore part of the German
Team [4]), DoH! Bots [5] and BreDoBrothers.

Participation in the GermanOpen 2009 and RoboCup 2009 resulted in 3rd place each,
and the second round robin pool has been reached in RoboCup 2010.The Team also par-
ticipated in all technical challenges in these years reaching the 3rd and 10th place. Besides
official RoboCup competitions the Nao Devils regularly participate at other international
events such as the Festival della Creatività in Florence, Italy, the RoboCup Exhibition and
Engagement Event in Eisteddfod of Wales, UK, and the Athens Digital Week in Greece.
It is also planned to take part in the Standard Platform League of RoboCup 2011.

1.2 Software Overview

The software package used by team Nao Devils consists of a robotic framework, a simu-
lator and different additional tools.

The framework, running on the Nao itself, is based on the German Team Framework
[6]. The latest version, released by team B-Human2, was used as a basic structure in 2010,
replacing the motion, vision and behavior modules by team Nao Devils’ own versions (see
appendix B.3 for details about the origin of each module). The framework communicates
with NaoQi using the libBHuman, completely separating it from Aldebaran’s software
modules. Support for Microsoft Visual Studio 2008 is included, using a cross compiler
to generate native code for the Linux running on the Nao. For a short introduction and
overview on the framework see appendix B. A more into depth description can be found
in [7].

To test developments in simulation, the software SimRobot was used instead of com-
mercial alternatives, such as Webots from Cyberbotics3. Being open source offers great
advantage, allowing to adapt the code to own developments. In addition having the
feature to directly connect to the robot and debug online (see appendix A.2.4) is very
convenient during development. SimRobot [8] is a kinematic robotics simulator developed
in Bremen which (like Webots) utilizes the Open Dynamics Engine4 (ODE) to approxi-
mate solid state physics. Using update steps of up to 1 kHz for the physics engine enabled
the possibility of realistic simulated walking experiments closely matching the gait of the

2http://www.b-human.de/file_download/27/bhuman09_coderelease.tar.bz2
3http://www.cyberbotics.com/
4http://www.ode.org/

2

http://www.b-human.de/file_download/27/bhuman09_coderelease.tar.bz2
http://www.cyberbotics.com/
http://www.ode.org/

real robot. It also features realistic camera image generation including effects like motion
blurring, rolling shutter, etc.

Since B-Human’s team report 2009 [7] covers the basics and usage of the simulator in
great depth, a detailed description in exclude from this report. For further details please
refer to [7] chapter 8.

To visualize behavior the adapted XABSL editor of the German Team as well as the
Java reimplementation 5, done by team Nao Team Humbolt are used. Since debugging
behavior running on the real robot can be really difficult to comprehend, team Nao Devils
developed a XABSL debug tool. A logging mechanism records all XABSL decisions online
during gameplay. With help of the XABSL debug tool, developed by team Nao Devils,
these logs can be combined with a video file, to analyze and replay robots decisions. A
detailed description of this tool can be found in section 4.4.

5http://www.naoteamhumboldt.de/projects/xabsleditor/

3

http://www.naoteamhumboldt.de/projects/xabsleditor/

Chapter 2

Motion

The main challenge of humanoid robotics certainly are the various aspects of motion
generation and biped walking. Dortmund has participated in the Humanoid Kid-Size
League during Robocup 2007 as DoH! Bots [5] and before in RoboCup 2006 as the joint
team BreDoBrothers together with Bremen University. Hence there has already been
some experience in the research area of two-legged walking even before participating in
the Nao Standard Platform League of 2008 as the rejoined BreDoBrothers.

The kinematic structure of the Nao has some special characteristics that make it
stand out from other humanoid robot platforms. Aldebaran Robotics implemented the
HipYawPitch joints using only one servo motor. This fact links both joints and thereby
makes it impossible to move one of the two without moving the other. Hence the kinematic
chains of both legs are coupled. In addition both joints are tilted by 45 degrees. These
structural differences to the humanoid robots used in previous years in the Humanoid
League result in an unusual workspace of the feet. Therefore existing movement concepts
had to be adjusted or redeveloped from scratch. The leg motion is realized by an inverse
kinematic calculated with the help of analytical methods for the stance leg. The swinging
leg end position is then calculated with the constraint of the HipYawPitch joint needed
for the stance foot. This closed form solution to the inverse kinematic problem for the
Nao has been developed in Dortmund and used since RoboCup 2008 when other teams
as well as Aldebaran themselves still used iterative approximations.

2.1 Walking

In the past different walking engines have been developed following the concept of static
trajectories. The parameters of these precalculated trajectories are optimized with algo-
rithms of the research field of Computational Intelligence. This allows a special adaption
to the used robot hardware and environmental conditions. Approaches to move two legged
robots with the help of predefined foot trajectories are common in the Humanoid Kid-Size
League and offer good results. Nonetheless with such algorithms directly incorporating
sensor feedback is much less intuitive. Sensing and reacting to external disturbances how-
ever is essential in robot soccer. During a game these disturbances come inevitably in the
form of different ground-friction areas or bulges of the carpet. Additionally contacts with
other players or the ball are partly unpreventable and result in external forces acting on

4

the body of the robot.
To avoid regular recalibration and repeated parameter optimization the walking al-

gorithm should also be robust against systematic deviations from its internal model.
Trajectory based walking approaches often need to be tweaked to perform optimally on
each real robot. But some parameters of this robot are subject to change during the life-
time of a robot or even during a game of soccer. The reasons could manifold for instance
as joint decalibration, wearout of the mechanical structure or thermic drift of the servo
due to heating. Recalibrating for each such occurrence costs much time at best and is
simply not possible in many situations.

The robot Nao comes equipped with the wide range of sensors capable of measuring
forces acting on the body, namely an accelerometer, gyroscope and force sensors in the
feet. To overcome the drawback of a static trajectory playback, team Nao Devils devel-
oped a walking engine capable of generating online dynamically stable walking patterns
with the use of sensor feedback.

2.1.1 Dortmund Walking Engine

A common way to determine and ensure the stability of the robot utilizes the zero moment
point (ZMP) [9]. The ZMP is the point on the ground where the tipping moment acting
on the robot, due to gravity and inertia forces, equals zero. Therefore the ZMP has to
be inside the support polygon for a stable walk, since an uncompensated tipping moment
results in instability and fall. This requirement can be addressed in two ways.

On the one hand, it is possible to measure an approximated ZMP with the acceleration
sensors of the Nao by using equations 2.1 and 2.2 [10]. Then the position of the approx-
imated ZMP on the floor is (px, py). Note that this ZMP can be outside the support
polygon and therefore follows the concept of the fictitious ZMP.

px = x− zh
g
ẍ (2.1)

py = y − zh
g
ÿ (2.2)

On the other hand it is clear that the ZMP has to stay inside the support polygon
and it is also predictable where the robot will set its feet. Thus it is possible to define the
trajectory of the ZMP in the near future. The necessity of this will be discussed later. A
known approach to make use of it is to build a controller which transforms this reference
ZMP to a trajectory of the center of mass of the robot [11]. Figure 2.1.1 shows the pipeline
to perform the transformation. The input of the pipeline is the desired translational and
rotational speed of the robot which might change over time. This speed vector is the
desired speed of the robot, which does not translate to its CoM speed directly for obvious
stability reasons, but merely to its desired average. The first station in the pipeline is
the Pattern Generator which transforms the speed into desired foot positions Pglobal on
the floor in a global coordinate system used by the walking engine only. Initially this
coordinate system is the robot coordinate system projected on the floor and reset by
the Pattern Generator each time the robot starts walking. The resulting reference ZMP
trajectory pref calculated by “ZMP Generation” (see section 2.1.3 for details) is also
defined in this global coordinate system.

5

Pattern
Generator ZMP Generation

ZMP/IP
Controller

Inverse
Kinematic

Arm
Movement

CoM
Calculation

Robot

Target Angles

Measured Angles Measured ZMP

-
+

+

Swinging Leg
Controller

Footsteps

Desired
ZMP

Target
CoM

Position

Actual
CoM

Position

Complete
Foot Positions

Figure 2.1: Control structure visualization of the walking pattern generation process.
Data expressed in the robot coordinate system are represented by a blue line and data
expressed in the global coordinate system is represented by a red line.

6

The core of the system is the ZMP/IP-Controller, which transforms the reference ZMP
to a corresponding CoM trajectory (Rref) in the global coordinate system as mentioned
above. The robot’s CoM relative to its coordinate frame (Rlocal) is given by the framework
based on measured angles. Equation 2.3 provides the foot positions in a robot centered
coordinate frame.

Probot (t) = Pglobal (t)−Rref (t) + Rlocal (t) (2.3)

Those can subsequently be transformed into leg joint angles using inverse kinematics.
Finally the leg angles are complemented with arm angles which are calculated using the
x coordinates of the feet.

2.1.2 The ZMP/IP-Controller

The main problem in the process described in the previous section is computing the
movement of the robot’s body to achieve a given ZMP trajectory. To calculate this, a
simplified model of the robot’s dynamics is used, representing the body by its center of
mass only. The ZMP/IP-Controller uses the state vector x=(x, ẋ, p) to represent the
robot where x is the position of the CoM, ẋ the speed of the CoM and p the resulting
ZMP [10].

The system’s continuous time dynamics can be represented by

d

dt

 x
ẋ
p

 =

 0 1 0
g
zh

0 − g
zh

0 0 0

 x
ẋ
p

 +

 0
0
1

 v (2.4)

where v = ṗ is the system input to change the ZMP p according to the planned target
ZMP trajectory pref . As can be seen in figure 2.2, it is not sufficient to start shifting
the CoM simultaneously with the ZMP. Instead the CoM has to start moving before the
ZMP does. Therefore a preview of pref is needed to be able to calculate a CoM movement
leading to a stable posture.

Figure 2.2: CoM motion required to achieve a given ZMP trajectory.

In the case of this biped walking problem the measurable part of the state vector is
the ZMP position psensor(k). Therefore it is necessary to integrate an observer in the
system to estimate x and ẋ [12]. Figure 2.3 shows the overall system configuration. The
observer is put in parallel to the real robot and receives the same output of the controller

7

Figure 2.3: Control system with sensor feedback using an observer.

Figure 2.4: Performance of the controller under the influence of a constant external
disturbance resulting in an error in the measured ZMP.

to estimate the behavior of the real system and is supported by the measurements of the
ZMP. The output of the observer is the estimated state vector x̂ needed by the controller
to calculate the next desired CoM position.

An intuitive illustration of this observer-based controller’s performance is given in
figure 2.4, where a constant error is added to the ZMP measurement for a period of 1.5 s.
This error could be interpreted as an unexpected inclination of the ground or a constant
force pushing the robot to one side. The control system incorporates this difference and
compensates by smoothly adjusting the CoM trajectory, which consequently swings more
to the opposite direction.

A more detailed presentation of our approach and algorithms is presented in [13] and
their application to the Nao in [14].

2.1.3 ZMP Generation

The ZMP Generation calculates a reference ZMP using the given foot steps. Within
the support polygon the position can be freely chosen since every position results in a
stable walk. On the x axis the ZMP proceeds with the desired speed. This results in
a movement of the center of mass with constant velocity. On the y axis the ZMP is a
Bézier curve with a control polygon of 4 points and dimension 1. The coordinate of each

8

x

y

x

y

Figure 2.5: The control polygon consists of 4 points per foot with constants coordinates
within the respective coordinate frame. In this example a positive x speed is assumed for
a better visualization.

2 2.5 3 3.5 4 4.5 5 5.5 6
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

Time [s]

y
[m

]

Figure 2.6: Resulting reference ZMP along the y axis.

9

point is constant within the coordinate system of the respective foot. Figure 2.5 gives an
example. In the right single support phase the control polygon is Pr = {p1, p2, p3, p4}.
The same applies to the other single support phase. In the double support phase the
control polygon consists of the points p4, p

′
1, p
′
2, p5, where p′1 and p′2 are the same point in

the middle of p4 and p5. This leads to a smooth transition between the single and double
support phases. Figure 2.6 shows the resulting reference ZMP along the y axis.

2.1.4 Swinging Leg Controller

3.7 3.8 3.9 4
0

0.005

0.01

0.015

0.02

0.025

Zeit [s]

z
[m

]

(a) Step height over time.

0 0.01 0.02
0

0.005

0.01

0.015

0.02

0.025

0.03

x [m]

z
[m

]

(b) Stepheight over x for a walk along the x
axis.

Figure 2.7: Movement of the swinging leg in the global coordinate system.

The PatternGenerator sets the foot positions on the floor. They could be imagined
like footsteps in the snow. Therefore the footpositions of the swinging leg during a
single support phase are missing. They are added by the Swinging Leg Controller which
calculates a trajectory from the last point of contact to the next utilizing a B-spline. The
control polygon consists of 9 points with 3 dimensions each. The x and y coordinates
are set along the line segment between the start and end point. The z coordinates are
increased and decreased respectively by 1

6 of the maximal step height. The z coordinate
over time can be seen in figure 2.7(a). To reduce the influence of the leg inertia the feet
are lifted and lowered at the same speed. Figure 2.7(b) shows the z coordinate over x.
The foot reaches its end position along the x axis some time before the single support
phase ends. This reduces the error if the foot hits the ground too early.

2.2 Special Actions

All none-walking movements are executed by playback of predefined motions called Spe-
cial Actions. These movements consist of certain robot postures called key frames and
transition times between these. Using these transition times the movement between the

10

key frames is executed as a synchronous point-to-point movement in the joint space. Such
movements can be designed easily by concatenating recorded key frames.

2.3 Current Research

Solving tasks given by playing robotic soccer games requires precision in motion execution.
Thinking about tasks such as kicking a ball this is rather obvious since the precision of
the kick highly influences the outcome of the motion. When thinking about reaching a
good shooting position first of all a precise localization is needed. One essential part of
this is updating the localization incrementally with the help of motion updates. Thus
having precise knowledge about the executed motion also greatly helps the quality of
localization. The concept of measuring such motion updates with the help of sensors is
called odometry. In difference to rolling robots, humanoid robots cannot measure their
motion directly with the help of sensors, but can calculate those by tracking feet positions
with the help of actuator positions and kinematics.

While this is theoretically trivial experiments have shown that an application to a real
robot, such as the Nao, leads to a rather high difference between calculated and executed
motion. Observation of the walk reveals that the main reason for this effect is sliding and
slipping of the robot. Given the nature of a dynamically stable walk it becomes obvious,
that keeping the ZMP inside the support polygon requires high accelerations, especially
of the swinging foot. Whenever the resulting forces cannot be maintained be the friction
of the robot foot and the ground the sliding constraint is violated resulting in a sliding of
the support foot relative to the ground. This motion cannot be measured by the actuators
and leads to the observed odometry error.

To improve the odometry information for humanoid robots team Nao Devils experi-
ments with sensor capable to measure those error. While it’s forbidden to add additional
sensor during RoboCup games, using the average measured odometry error as a correc-
tive factor would still be helpful to calibrate the robots motion during tournaments. Such
sensors could even be integrated in future robotic platforms.

Measuring sliding motions relative to the ground is the task of computer mice. Modern
optical mouse sensors are very capable, small in design and have low energy consumption,
making them ideal for such a task. In addition they measure the traveled distance without
having direct ground contact thus don’t interfere with the measurement. Lifting them
off the ground also ensures the measurement to stop. The motion of the swinging foot
will thus be ignored. Measuring rotational errors is highly important since those error
propagate to larger future errors over time. Unfortunately mouse sensors are only designed
to measure motions in x- y-direction and cannot measure rotations. But combining two
sensors, as can be seen in figure 2.8(b), overcomes this flaw (discussion can be found in
[15]).

Since hardware modification is forbidden in the Standard Platform league team Nao
Devils developed special shoes for the Nao, see figure 2.8(a), equipped with optical sensors.
The gathered information is transmitted via ZigBee wireless transfer to an USB receiver
inside the head. This allows for a temporary connection of up to four sensors.

First experiments have proven that the sliding error can be measured with these
sensors, since both the translation and rotation can be tracked with efficiency. Figure 2.9
demonstrates a measurement from one walking experiment, walking in straight forward

11

(a) Sensor board (b) Schematic view. Configuration 1 on the left, Con-
figuration 2 on the right.

Figure 2.8: Sensor placement.

direction. The robot is turning slightly on its support foot during each single support
phase. In general this is balanced by turning in the other direction during the next step.
But the measurement reveals that the rotation is not compensated in every step, resulting
in an deviation in y-direction over time.

While proving the concept the evaluation revealed that in praxis the measurement is
not reliably enough. The reason is the used hardware, which is developed to be used in
mobile mouse devices and is not powerful enough to measure the motion correctly under
non-ideal circumstances. Observation of the walking experiment reveals that the rocking
walking motion of the Nao sometimes violated the assumption that both sensors of one
foot have ground contact, falsifying the measurement. Thus in the future further exper-
iments will be conducted utilizing more advanced sensor hardware, such as Microsoft’s
BlueTrack1 and Logitech’s DarkField Laser Tracking2. A detailed overview on concept,
implementation and evaluation can be found in [15].

1http://www.microsoft.com/hardware/mouseandkeyboard/tracklanding.mspx
2http://www.logitech.com/images/pdf/briefs/Logitech_Darkfield_Innovation_Brief_2009.pdf

12

http://www.microsoft.com/hardware/mouseandkeyboard/tracklanding.mspx
http://www.logitech.com/images/pdf/briefs/Logitech_Darkfield_Innovation_Brief_2009.pdf

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
-0,3

-0,2

-0,1

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

left foot rotation right foot rotation accumulated rotation

foot step

ro
ta

tio
n

[ra
d]

(a) Step rotation

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
-200

0

200

400

600

position y

foot step

tra
ns

la
tio

n
y

[m
m

]

(b) Accumulated y-translation error

Figure 2.9: Example walk in x direction

13

Chapter 3

Cognition

From the variety of Nao’s sensors only microphones, the camera and sonar sensors can
potentially be used to gain knowledge about the robot’s surroundings. The microphones
haven’t been used so far and are not expected to give any advantage. The sonar sensors
provide distance information of the free space in front of the robot and can be used for
obstacle detection. However, the usage of these sensors depends on maintaining a strictly
vertical torso or at least tracking its tilt precisely since otherwise the ground might give
false positives due to the wide conic spreading of the sound waves. Additionally, for
certain fast walk types the swinging arms were observed to generate such false positives,
too, and the sonar sensor hardware in general is currently unreliable and often does not
recover from failure once the robot has fallen down. Thus for exteroceptive perception
the robot greatly relies on its camera mounted in the head.

The following chapter describes the information flow in the cognition process starting
from image processing and its sub-tasks in section 3.1. Special focus is given to new devel-
opments since 2009, meaning an improved line and center circle detection (see section 3.2)
and a new localization module based on a multiple-hypotheses unscented Kalman filter
(see section 3.3). Finally section 3.4 gives an outlook about current research that did not
find its way into the code for RoboCup 2010, yet, but is expected to be applied in 2011.

3.1 Image Processing

The vision system used for the Nao in RoboCup 2008, 2009 and 2010 is based on the
Microsoft Hellhounds’ development of 2007 [16]. The key idea is to use as much a-priori
information as possible to reduce both the scanning effort and the subsequent calculations
needed. To process only a small fraction of all pixels the image is scanned along scan
lines of varying length depending on the horizon’s projection in the image (see fig. 3.1).
These scan lines are projections of radial lines originating from the point on the field below
the camera center. Keeping the angular difference constant allows the implicit usage of
this information during the scanning process, optimizes transformations between image
and field coordinate systems and significantly simplifies the inter-scan-line clustering and
reasoning about detected objects. In case of ambiguity additional verification scans are
carried out. A sparse second set of horizontal scan lines is introduced to detect far goals.

All relevant objects and features are extracted with high accuracy and detection rates.

14

Figure 3.1: Image scanned along projections of radial lines on the field.

(a) Camera Image. (b) Field view.

Figure 3.2: Objects and features recognized in the camera image.

15

(a) Camera Image. (b) Field view.

Figure 3.3: Recognition of the center circle.

Since the Nao SPL is the first RoboCup league (neglecting the simulation leagues and the
Small Size League with global vision) without extra landmarks beside the goals, detecting
features on the field itself becomes more important. The detection of those is described
in more detail in the following section.

3.2 Line and Circle Detection

Besides lines also their crossings (fig. 3.2(a)) and the center circle (fig. 3.3(a)) are
determined. The latter in combination with the middle line allows for a very accurate
pose estimation in the center area of the field (see fig. 3.3(b)), leaving only two possible
symmetrical positions which can be easily resolved with any goal observation. In certain
situations line crossings from the penalty area can even be used to disambiguate a left
or right goal post (see fig. 3.2). Thus instead of having to look up for the crossbar or
around for the second post the robot can focus on tracking the ball.

The input for the line and circle detection algorithm is a set of line points generated
in the main scanning routines described above. Each point annotates a position where a
scan line intersected a field line. Besides the positions both in the image and on the field
additional information are given about the gradient and the index of the scan line which
generated this line point.

The previous approach used till 2009 consisted of a clustering heuristic based on
positions and gradients to generate line fragments. This clustering has squared complexity
in the number of line points but can be computed efficiently on the Aibo/Nao in less than
1 ms. Those line fragments are fused into lines to calculate line crossings on the field. In an
intermediate step the line fragments are tested for circle tangents. The intersection of the
perpendicular bisector of each pair of fragments in field coordinates can be considered
as a center of the expected center circle. A visible center circle in the image tends to
generate several of those intersections close to each other with approximately the right
radius. The resulting center point’s precision can be improved further by projecting it to
the most likely middle line hypothesis. The existence of a suitable middle line hypothesis

16

(a) Detected line points linked together.
Chains might be broken due to missing
line detection in-between fragments.

(b) Field lines and resulting crossings,
including a virtual crossing (left) and a
partly unclassified one (upper right).

Figure 3.4: Forming chains out of detected line points to identify field lines.

is also useful to reject false positives generated from other green-white structures around
the field. This is a fast method for line and circle detection that worked well on the Aibo
since 2005 (as part of the code which won several Opens with the Microsoft Hellhounds
and the RoboCup with the German Team) and also on the Nao (with minor adaptations
in parametrization). A drawback on the current SPL field however is that the white goal
net tends to generate a number of line fragment false positives. Additionally, a significant
part of the center circle needs to be visible for reliable detection.

For 2010 the line and circle recognition has been rewritten with the goal to overcome
those problems. The implementation of this new method can be found in the module
NDLineFinder2. While the color information and the general quality of the Aibo’s camera
was inferior to the Nao’s, the latter one’s in-built edge enhancement often generates
artifacts around the field line edges which in turn decrease the gradient quality when
applying for example a simple Sobel operator as done here. This is why the new approach
neglects gradient information. The input line points are linked into chains based on their
originating scan lines, their relative distances, and white color classification on at least
one of the pixels between them perpendicular to their connection. This concatenation is
of linear complexity in the number of line points in case those line points are sorted by
their originating scan lines which is given due to the scanning process itself.

Those resulting chains (as illustrated in figure 3.4) offer easy, reliable and efficient ways
to extract line fragments or circle fragments. Line fragments can be found by identifying
sub-chains exceeding a specified minimal length which comply to a given line heuristic. In
this case the average and the biggest deviation from a linear regression line fit is chosen.
In order not to evaluate new linear regressions for the addition of every new point those
sub-chains are extended as long as additional points do not violate the thresholds for the
initial line fit. In case the average or biggest error exceeds the initial line fit, a new fit is
calculated and examined, and eventually extended further.

The extraction of circle parts out of the given line point chains is done in a similar
fashion. One possibility to do this would be to try and find a series of points with
similar non-zero curvature. This however is very prone to noise since the discretization
introduced by the pixels is of the same magnitude as the curvature itself as can be seen
in figure 3.3(a). The alternative approach taken here is the identification of trends in

17

(a) Detected line points linked together. (b) Classification of field line and circle
fragment.

Figure 3.5: Reliable center circle detection even when only small fragments are visible.

the direction change of line point connections. As a first step the local tangential angle
at the line point is calculated as a smoothed value from the point and its predecessors
and successors (if available). Similar to the linear regression for line fragments sub-chains
are identified which angular changes show a trend significantly different from zero (since
zero corresponds to straight lines) with average and maximum errors below a certain
threshold. As for the line detection, recomputing the trend is only necessary for a small
subset of points belonging to a single circle fragments (indicated with red connections in
figure 3.3(a)). The points of all identified sub-chains are then used to estimate the best-fit
circle in field coordinates using the Levenberg Marquardt method. This circle percept
can be used as is or augmented with the line information to provide an orientation for the
center circle in case a suitable middle line can be identified. The results of the described
line and circle detection algorithms are shown in figure 3.3 and 3.5.

3.3 Localization

One main focus of research is on Bayesian filters, where several enhancements for real
time vision-based Monte Carlo localization systems [17] have been presented, and the
approach based on the detection of field features without using artificial landmarks has
won the “almostSLAM” Technical Challenge at RoboCup 2005 [6]. The methods used
up until RoboCup 2009 have all been based on those particle filters developed between
2005 and 2007. For RoboCup 2010 however a different approach has been developed and
used in the competitions.

Inspired by [18] the basic idea was to combine the smoothness and performance of
Kalman filtering with a multi-hypothesis system. The latter is necessary to allow recovery
from huge errors due to extended periods of integrated odometry errors without correcting
through observations, or rapid unexpected position changes due to contact with other
robots or “teleportation” by human intervention. All of those issues occur in robot soccer
games and are amplified by the huge odometry errors inherent in fast biped walking.

A classic Kalman filter applied to localization in a SPL scenario can only be used for
position tracking, and only as long as the estimate does not deviate too much from the
true positions. Most perceptions on a SPL field are ambiguous, so the sensor update will

18

only be done with the most likely data association. At the same time, the perception
of field features like field line crossings is often uncertain so that L- and T-crossings can
not be distinguished (e.g. as in figure 3.4(b)). In such cases wrong associations tend to
drive the estimation further away from the true position. Recovery from such situations is
only possible when assigning huge weights (e.g. small observation covariances) to unique
perceptions like observing both goal posts in the same frame which then decreases the
robustness against false perceptions originating from the audience around the field.

This problem is addressed in [18] with a sum-of-Gaussians Kalman filter, where each
Gaussian is split into several new ones representing the results of different association
choices. Applying all possible data associations to every hypothesis generates exponential
growth which needs cutting back shortly after by applying pruning heuristics and fusing
similar Gaussians to prevent an explosion of computational complexity. Thus lots of
processing time is wasted on creating and destroying new hypothesis which are either
unlikely or very similar to the ones that already exist.

A different approach is implemented in the module MultiUKFSelfLocator. Only few
new hypotheses are generated periodically at positions with high probability based only on
recent sensor information. Those hypotheses are only updated using data that lies inside
a certain expectation threshold. Non-linearity in the sensor model is addressed using the
unscented transformation technique. Several other approximations and simplifications
result in a localization method that is an order of magnitude faster than the previously
used particle filter while providing superior localization quality and increased robustness
to false positive perceptions (see figure 3.6). A detailed presentation of the approach and
its stochastic soundness will be given elsewhere.

3.4 Current Research

The modules and algorithms described in the previous sections 3.1 to 3.3 can all be found
in the code released together with this document. This section summarizes both current
and previous research and experiments for which the transition into the actual soccer
code has not been done yet but is expected to influence the code for RoboCup 2011.

3.4.1 Active Vision

A recent development comes in the form of an active vision module replacing the common
strategy to simply move the robots head continuously to cover as much as possible of the
robot’s environment. Details of the approach have been presented at the RoboCup sym-
posium 2010 [19]. The basic idea of this new active vision module is to move the camera
in a way that is optimal for localization instead of just scanning the environment using
predefined trajectories (see figure 3.7). The basis for this is a particle filter localization
providing the current belief state as a particle distribution. A commonly used quality
criterion for such a belief state X is the entropy H(X). Since the true localization of
the robot is unknown, the evaluation of expected consequences of active vision decisions
needs to be based on the uncertain belief state. The sensor modeling for the (mostly
ambiguous) landmarks (visualized in figure 3.8 for two fixed positions and observations)
provides an estimation of the probability distribution P (y|u,Xt) for making observations
y after executing a motion u based on the current belief state Xt. Thus a simulation of

19

-3000 -2000 -1000 0 1000 2000 3000

-2000

-1000

0

1000

2000

GroundTruth

MultiUKF

ParticleFilter

(a) Estimated positions and ground truth on the field.

30 40 50 60 70 80 90 100 110 120
0

200

400

600

800

P
os

iti
on

 E
rr

or
 [m

m
]

30 40 50 60 70 80 90 100 110 120
0

10

20

30

40

50

Time [s]

Ab
. O

rie
nt

at
io

n
E

rro
r [

°]

MultiUKF
Partikelf ilterParticleFilter
MultiUKF

(b) Errors in pose estimation.

30 40 50 60 70 80 90 100 110 120
0

5

10

15

20

25

30

35

40

ParticleFilter
MultiUKF

Time [s]

Fr
am

e-
U

pd
at

e
[m

s]

(c) Localization runtime.

Figure 3.6: Localization of Multiple-Hypotheses UKF compared to previous particle filter
solution (which was used in RoboCup 2009). Both are running in parallel on the Nao
using the same perception as input. Ground truth is provided by a camera mounted
above the field.

20

(a) Ambiguity close to the opponent goal which
can not be resolved by observing a single goal post
alone.

(b) The optimal viewing direction estimated from
the previous particle distribution.

Figure 3.7: Basic idea of active vision: Choosing the viewing direction which improves
the current localization the most.

the localization updates for each possible action can be performed and the one expected
to minimize the entropy can be chosen to be executed.

Since such simulations include considering all possible observations for all actions
for a current belief state which is expressed with a number of particles, this calculation
involves a significant computational complexity. Several approximations were considered,
implemented (if practical), and evaluated for approximation quality and speed-up:

• Using clusters instead of separate particles for entropy calculation; neglects the
particle variations inside the cluster.

• Precomputing observations in look-up table; introduces discretization error.

• Precomputing the measurement probability for each possible pose and action deci-
sion; not practical since the table size exceeds 100MB for sensible resolutions.

• Neglecting areas with low particle density.

The effects on estimation quality are visualized in figures 3.9 and 3.10. The resulting sys-
tem has a average runtime of 4.2 ms on the Nao. Comparative results of the presented ap-
proach against the previously used passive scanning are visualized in figures 3.11 and 3.12
where the robot walked to a series of points.

This module has not been used in RoboCup 2010. The main reason has been the
change of the localization strategy described in section 3.3. There are also some additional
issues that need to be addressed. Since the underlying particle localization does not take
into account negative information the active vision approach tends to fail in kidnapped
robot scenarios where the belief state is absolutely wrong. In this case the active vision
decision is based on incorrect data and the supposedly optimal decision may look at
areas without useful features. Since “not seeing anything” does not change the particle

21

(a) Line crossing observations result in highly
multi-modal but focused distributions.

(b) Observing a goal post indicates the field half,
but distinguishing between left and right post is not
always possible.

Figure 3.8: Measurement probability distribution p(yt|xt) for different observations.
Brighter areas correspond to higher probabilities. Illustration is related to x und y with
probability integrated over ϕ.

distribution the belief state stays the same and so does the active vision decision. For
this reason the described system needs a monitoring concept switching back to predefined
scanning in such failures. Another point where different handling becomes necessary is
ball tracking, especially when done conceptually different from the localization e.g. with
a Kalman Filter, in which case the active vision decision could not be calculated in a
single uniform model.

3.4.2 Distributed Simultaneous Localization and Robot Tracking

Current work includes robust cooperative world modeling and localization using concepts
based on multi robot SLAM. Keeping track of the robot’s dynamic environment (see
figure 3.13) opens the possibility for tactical behavior decisions beyond simple reactive
behaviors which are currently in use. In this joint modeling of the robot’s state a particle
filter estimates the robot’s pose. Clusters of particles are combined into super-particles
which map the dynamic environment using a number of Kalman filters. This represents
an approximation of FastSLAM and both decreases the integration of odometry error
compared to robot-centric local modeling (see figure 3.14) and allows resolving multi-
modal localization belief states using shared information. The approach even preserves
its SLAM functionality and is able to maintain a robot’s localization based on mapped
dynamic obstacles only. A detailed presentation of the approach is presented in [20].

By specifically addressing the heterogeneity of the perceived information and the need
to synchronize the estimation between the team of robots the task’s complexity can be
reduced to be in the range of applicability on limited embedded platforms. This module’s
average runtime on the Nao in the configuration used on the RoboCup 2010 would have
been slightly above 20 ms which would not have allowed to keep a frame rate of 15 Hz or
even 30 Hz. Especially the switch to a motion frame rate of 100 Hz made its application
impossible. Additionally the system is based on the outdated particle filter localization

22

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

−90 −60 −30 0 30 60 90

E
xp

ec
te

d
E

nt
ro

py

Long Range (utilt = −28°)

−90 −60 −30 0 30 60 90

Short Range (utilt = −11°)

No Simplifications
Precalculated Observations

Selective Computing

(a) Expected entropy.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

−90 −60 −30 0 30 60 90

M
ea

n
E

rr
or

 [m
m

]

Long Range (utilt = −28°)

−90 −60 −30 0 30 60 90

Short Range (utilt = −11°)

Error

(b) Average error of particles.

Figure 3.9: The expected entropy and the real error of particles after executing an action
on a penalty kick position facing the center circle.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

−90 −60 −30 0 30 60 90

E
xp

ec
te

d
E

nt
ro

py

Long Range (utilt = −28°)

−90 −60 −30 0 30 60 90

Short Range (utilt = −11°)

No Simplifications
Precalculated Observations

Selective Computing

(a) Expected entropy.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

−90 −60 −30 0 30 60 90

M
ea

n
E

rr
or

 [m
m

]

Long Range (utilt = −28°)

−90 −60 −30 0 30 60 90

Short Range (utilt = −11°)

Error

(b) Average error of particles.

Figure 3.10: The expected entropy and the real error of particles after executing an action
on the removal-penalty’s return position, i.e. on the side line facing the center circle.

of previous years.
For 2011 it is planned to integrate parts of this distributed world modeling approach

with the new localization system described in section 3.3. Since the UKF localization
concept does not allow the transformation of a combined estimator according to the
Rao-Blackwell theorem the SLAM aspect can not be transferred in this case. It is still
possible however to perform a simultaneous distributed estimation of several world map
hypotheses using the concepts described in [20]. The advantages of coping with huge
odometry errors can thus be transferred while still providing a suitable alternative world
map when relocalizing after getting lost or being moved by external influence as happens
frequently in RoboCup SPL games.

23

−2500

−2000

−1500

−1000

−500

 0

 500

 1000

 1500

 2000

 2500

−3000 −2000 −1000 0 1000 2000 3000

y
[m

m
]

x [mm]

Groundtruth
Modeled location

(a) Passive localization.

−2500

−2000

−1500

−1000

−500

 0

 500

 1000

 1500

 2000

 2500

−3000 −2000 −1000 0 1000 2000 3000

y
[m

m
]

x [mm]

Groundtruth
Modeled location

(b) Active localization.

Figure 3.11: Localization (green) versus true position (blue) of the robot while walking
to a series of target positions.

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 50 100 150 200 250

D
is

ta
nc

e
E

rr
or

 [m
m

]

Active
Passive

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 0 50 100 150 200 250

B
ea

rin
g

E
rr

or
 [°

]

Time [s]

Active
Passive

Figure 3.12: Position errors (in average 172 mm and 418 mm) and orientation errors (in
average 4.97◦ and 6.14◦) of localization while walking to target positions on the field for
the active and passive approach, respectively.

24

Figure 3.13: Modeling of the robot’s dynamic environment.

(a) No gain for frequently observed robots. (b) Tracking of infrequently observed robots sig-
nificantly improved.

Figure 3.14: Advantage by unified (blue) compared to separate robot-centric modeling
(red).

25

Chapter 4

Behavior

For behavior design the Nao Devils and previous Dortmund teams relied mostly on
XABSL (Extensible Agent Behavior Specification Language). XABSL was developed in
its original form in 2004 using XML syntax [21] in Darmstadt and Berlin and adapted
in 2005 to its current C-like syntax and a new ruby-based compiler by the Microsoft
Hellhounds.

Behavior is specified by option graphs. Beginning from the root option, subsequent
options are activated similar to a decision tree until reaching a leaf, i.e. an option rep-
resenting a basic skill like “walk” or “execute special action” which are parameterized
by the calling option. Each option contains a state machine to compute the activation
decision based on a number of input symbols provided by other modules (see section 3.1).
Part of the soccer playing option graph is shown in figure 4.1 as a demonstration example.

The behavior is divided in the three basic playing roles, striker, supporter and goalie.
While the latter, due to the rules, has a fixed role and behavior, the striker and supporter
switch roles dynamically, based on transmitted soccer action symbols and situational
awareness. Details about the structure of the team communication can be found in [7]
section 3.5.4.

While it is possible to design complex behavior using XABSL, several tasks may
prove difficult or impossible to specify using XABSL alone, e.g. robust and efficient path
planning including obstacle avoidance and also any strategic team behavior extending
beyond simple role switching. Therefore several possibilities were investigated to augment
XABSL.

4.1 Behavior Coordinate System

Past approaches to behavior planning of team Nao Devils were based on the robots current
view and thereby on the robot centric coordinate system. As described in chapter 2.1 the
walking engine applied by team Nao Devils is based on the concept of dynamic stability.
Thus per definition it is impossible to stop the robot at any time during the execution of
a walking motion. This problem is coped with by introducing a preview phase containing
the next planned motion which has to be executed to ensure stability. Intuitively this
corresponds to the inability to stop all motion while in the process of having one foot
lifted to bring forward when waling fast. In every case one has at least to execute the

26

Figure 4.1: XABSL Option graph example.

27

current step to its end. But as a result a change of the walk request can only be executed
within a given time, i.e. when the current swinging foot touches the ground and the next
footstep is not yet planned into the current motion, thus resulting in a delay. This is
especially true for a complete stop, which is applied to position the robot next to the
ball. If a behavior is written to only set the target speed to zero the moment the target
position is reached, the robot tends to overshoot and is likely to stumble against the ball.

In the past this problem was dealt with by stopping the robot some time before
actually reaching the ball. But since the distance traveled after the stopping command is
given differs depending on the speed and currently executed motion of the robot, finding
the right distance was a matter of time consuming manual tuning of the behavior and
still resulted in suboptimal results. Since XABSL itself does not address this problem, it
is solved by introducing a new coordinate system, called after preview, centered on the
expected future robot position. Actually this coordinate system is not related to a fixed
time interval in the future, but rather to a dynamic offset depending on the executed
motion or walking phase, which might also be zero in case of statically stable motions
which can be interrupted at any time.

Consequently also the representations available to the XABSL behavior module are no
longer the direct localization and tracking outputs, but those are transformed to the after
preview coordinate system. This allows the behavior to make decisions based on the exact
future state of the robot at which those behavior decisions actually have an impact. All
intermediate actions till this point will be executed independent of the current decision,
so now the decisions will be based on the correct environmental circumstances on which
this decision will be acting upon, resulting in more precise and reactive behavior planning.

When visualizing the corresponding representations (marked by “...AfterPreview”) in
SimRobot, the origin for drawing first needs to be set using the following command:

vfd worldState origin:RobotPoseAfterPreview

4.2 GoTo Motion Command

The motion commands used in previous years till RoboCup 2009 have been based on
desired speed vectors which were updated with every behavior execution. This mode of
control dates back to the AIBOs which could be controlled like omnidirectional vehicles.
Additionally for an AIBO it was sufficient to walk straight to the ball to grab and turn with
it. For humanoid robots however the the omnidirectional characteristic of the walking
generation is much less distinct, and at the same time a target position close to the ball has
to be reached with a certain target orientation which increases the difficulty for trajectory
control. While it is possible and also commonly done to generate omnidirectional walking
patterns with the walking engine described in section 2.1, for a humanoid robot such
as the Nao it is far more convenient to walk straight than it is to walk sideways. This
is reflected in the possible walking speeds in each direction. Generating smooth path
trajectories following the characteristics optimal for those described walking capabilities
is obviously not possible in an intuitive way using a state-based behavior description
language such as XABSL.

To overcome those limitations and ultimately to achieve more precision and speed
in positioning close to the ball, a more advanced approach to path planning has been
done for the Nao Devils’ robots for RoboCup 2010. The utilized Dortmund Walking

28

Figure 4.2: SimRobot worldstate with path debug drawing.

Engine is based on foot step planning (see section 2.1). Previously the output of the
XABSL behavior, i.e. the motion speed vector, has been used to generate those step
patterns. Since XABSL has no knowledge about the planned footsteps much information
about the motion is lost. Therefore a basic behavior has been introduced allowing the
trajectory planning to be done by the walking engine which has much better control and
feedback about the executed motion. The motion request has been adapted accordingly
to accept a target position and orientation and different XABSL go to commands have
been implemented to cover common motion tasks.

In the very basic version a target position relative to the current behavior reference
frame (compare section 4.1) can be specified. This generates a smooth trajectory guiding
the robot to the desired position. In case the desired target orientation and position
allows a direct approach where the robot walks mostly straight, this results in the robot
approaching the desired position with maximum speed to the last step without any need to
slow down significantly before reaching the position. Otherwise the last steps are executed
using omnidirectional step patterns to avoid moving in too large loops and wasting time
on the way. Even with the same walking parameters as in the previous year (and thus the
same maximal speed) the average speed during game situations could raised significantly,
and faster walking speeds resulting from recent changes in parametrization and ZMP
trajectory generation could be exploited to a far bigger extend.

The paths resulting from those behavior calls can be visualized using SimRobot. After
setting the origin for drawing to the behavior coordinate system as described in section 4.1,
the following command will display the corresponding drawing as can be seen in figure
4.2:

vfd worldState module:RequestTranslator:Paths

29

4.3 Dynamic Positioning

Two new key aspects are given by the improved localization described in section 3.3 and
the goto command of the previous section. While the latter allows an easy and precise
positioning in significantly less time, the localization quality allows far more than just
to place the supporter between ball and goal. Instead it can be calculated how much of
the goal is already blocked by other field players. For this the opening angle of the goal
as perceived from the modeled ball position is calculated together with the ratio of this
angle which is blocked by the corresponding field player. While the goal keeper will try
to block its goal anyway, this information can be used for the striker to decide whether
to approach the ball from the side or from the back, or for the supporter to dynamically
position itself either defensively blocking the passage to the goal or in a more offensive
position in case the striker already blocks enough of the opening angle to the goal just
by positioning itself behind the ball for kicking.

This way it is relatively simple to design dynamic positioning which greatly helps team
play and is useful for placing defending robots on ideal blocking positions between ball
and own goal. Of course this would also be possible without the explicit goto command,
but on the one hand the code needed even for such positioning is far less complex, and
on the other hand the resulting motion execution allows repositioning to be done with
the minimum possible number of steps necessary instead of constantly shifting the robot
with small steps and low speeds. Thus the supporter itself can change its position to
cover dynamically the part not yet covered by the striker. To demonstrates the benefit
of this approach a situation with three robots is shown in figure 4.3. As an example
figure 4.3(b) demonstrates the WorldState representation of the goalie, the grey shadows
representing the communicated area which the other field players cover relative to their
ball models. Of course this approach suffers from missing synchronization between the
different models. This is expected to improve significantly with the distributed modeling
approach described in section 3.4.2. However, this approach to dynamic positioning has
already been applied successfully in RoboCup 2010 games.

4.4 Debug Tool

Debugging programmed code is essential to identify flaws and finding solutions to errors.
This is true for the code of the robotic framework but also for the behavior code written
to decide which action is most suitable regarding the current situation. As described in
section 4, team Nao Devils utilizes the XABSL programming language to implement the
soccer behavior. The written and compiled code of the behavior can be executed in a
simulation environment or directly on the robotic hardware.

Different kinds of debugging tools are an essential part of every programming suite
allowing to stop code during execution and get step by step information about the program
state and variables. This concept is rather practical for debugging behavior using the
simulator. Since the simulator runs both the robot code and the world simulation the
whole simulation can be stopped to have a look at the current state and decisions. This
allows to use the simulator to step frame by frame through the world state. To debug
the behavior with the simulator SimRobot (figure 4.3(a)) a view the current XABSL tree
containing XABSL symbols and variables (figure 4.4) can be displayed allowing a frame-
by-frame forward simulation. Stepping back is not possible since the framework allows

30

(a) 3D view of the scene. (b) Goalie WorldState view Goalie.

(c) Striker WorldState view. (d) Supporter WorldState view.

Figure 4.3: Robot WorldState views demonstrating the communicated goal blocking

31

no rewind.

Figure 4.4: Example of a XABSL tree.

The used simulator is a physical simulation based on the Open Dynamics Engine
(ODE). Therefore the simulation of even one robot is a rather time consuming process
resulting in a simulation slower than real-time on most modern standard PC platforms.
Simulating a complete match including six robots decreases the framerate to numbers that
make a user observation rather difficult. Even if the simulation would run in real time the
physical simulation is insufficient to model the real world exactly. Since small situational
differences can result in big differences in behavior decision the simulation model is not
satisfactory enough to test soccer behavior more complex than basic behavior. Thus the
most important behavior debugging can not be done in the simulator but on the real
robot.

Debugging code on the real robot is quite different. The use of a breakpoint concept
to stop the program during execution would stop the motion of the robot resulting most
likely in a fall of the robot. Therefore most debugging in autonomous robotics involves
monitoring rather than breakpoint approaches. The program execution is supervised with
the help of a remote connection that broadcasts information about the program state,
sensor input and decisions. In contrast to the breakpoint approach this method allows for
a debugging in real game situations involving other autonomous robots but is prohibited
during tournament game play. Unfortunately the nature of the supervision process results
in a delay of information. Therefore the supervision cannot be matched exactly with the
current field situation. In addition the broadcast connection results in an disturbance of
the the normal code execution. In general the disturbance is minor in scope but can result
in timing problems. The result would be a stuttering of the robot which changes the state
that should only be monitored. Especially for debugging of robot behavior supervision of
the written code is a rather inadequate solution.

Since execution directly onto the robot is of special interest for behavior development
team Nao Devils developed a tool allowing a different debugging concept combining the

32

convenience of simulator debugging with code testing on the real robot. The concept is
based on logging each behavior decision during the execution. To allow a later analysis
of the logged data the corresponding sensor information is also stored in addition to each
decision. Since the complete sensor information, including the camera pictures, would
result in an unmanageable amount of data, only the resulting information about the
world model are saved.

With this stored data a playback of all behavior decisions and a debugging of decisions
on given data can be done. But an analysis of the world model is not possible, since only
the modeled gamestate is stored and cannot be compared with reality. But to allow even
that comparison a video camera can be used to record the real gamestate in a movie file.

Based in these concepts team Nao Devils developed a tool with following features:

• The robot logs its internal state machine, the required symbols and hardware com-
mands (motion, LED-Requests etc.) once per frame.

• A graphical user interface allows for an easy reading of the logfile and shows the
input/output symbols and current XABSL state tree.

• A 2D field view shows the modeled robot position, direction and velocity, the ball
position and the team mate positions.

• A video can be loaded and displayed. The time is synchronized manually by match-
ing known state information to the video file.

• The the behavior log can be played back, stopped, stepped through frame by frame
and rewound to interesting positions.

The tool is implemented using QT C++ as a platform independent standalone tool.
The written log (.xlg) is loaded line by line and a parser extracts the information of
the symbols and the state machine. The parser is specialized to interpret XABSL logs
but due to clearly defined interfaces between the interpreter and the different widgets
an adaptation to another behavior language would be possibly by changing the parser.
Additional debug views specialized for other description languages can also be added
easily.

The progress bar allows an intuitive navigation within the log file. The current frame
information is shown using the following widgets (see figure 4.5):

• Input/output Symbols-Treeview Widget: Displays an overview with all logged
symbols and their values represented in a tree. It’s possible to select specific symbols
to display more detailed information.

• Detailed Symbols Widget: All symbols selected in the Symbols-Tree-View are
shown as a table here, so that the user has a quick overview about the needed
symbols. The columns represent the symbol names, the rows represent different
frames. By highlighting current frame the user can see the chronological history
of the symbols. This is useful, if the user wants to judge the stability of a given
symbol.

• Woldstate Widget: A 2D-Field is painted, displaying the current modeled robot
position, direction, velocity and the latest ball position. This overview allows the
user to judge the internal robot world model and compare it to the reality repre-
sented by the video file.

33

Figure 4.5: XABSL Debug Tool.

34

• Video Widget: Display of the video file synchronized to the internal robot state.

• Control Widget: The user can navigate within the logfile including jump for-
ward, back step by step, play slow-motion etc.

• Statemachine Widget: This Widget shows the current option-state path.

All this is designed to enable a behavior designer to replay all the states and analyze
the decisions a robot made. It is therefore easy to find out,

• whether a decision was based on a false perception: If the robot would have correctly
seen a certain feature, it would have behaved correctly. This kind of error results
from either a false perception or wrong interpretation and modeling.

• whether the decision was based on false decisions made on correct knowledge: The
user observes a gamestate which resulted in an undesired decision. If the internal
world model matches the real world the wrong decision is a result of a decision error
or a coding bug.

The tool is still in an early state of development missing features such as synchronizing
log files of different robots to debug team decisions. But still the debugging tool has proven
helpful in replaying gamestate decisions and allowing expert programmers to judge and
debug errors thereby improving the written XABSL code. The most useful information
was thereby gained from actual tournament games which were otherwise impossible to
supervise due to the given rules.

4.5 Current Research

4.5.1 Artificial immune network and XABSL

Using XABSL for behavior development has several disadvantages: The more information
about the world is available, the more difficult is it to model transitions between XABSL
states in an appropriate way. A lot of symbols has to be used and combined for decision
making. Hence, behavior development turns often out as a time-consuming, error-prone
process. Furthermore, XABSL on its own is not a learning system and the success of the
behavior is therefore completely dependent on expert specifications. Due to this limita-
tions one can say that XABSL is suitable for the specification of less complex behaviors,
e.g. going to the ball or to a certain position, searching, kicking and passing the ball.
The main goal of our current research is it to develop a method in order to select the next
action of the soccer agent. The action selection mechanism uses local and distributed
information and is based on an artificial immune network. Figure 4.6 shows the interface
between XABSL and the action selection mechanism: The option decide executes the
artificial immune network algorithm, interprets the result and calls an underlying basic
behavior option. The immune network algorithm uses also the defined XABSL symbols,
e.g. the position of the ball or shared information between the robots (which is a consol-
idated, common model of the robot soccer world). The action selection mechanism can
be seen as an extension of XABSL.

35

Figure 4.6: Interface between XABSL and artificial immune network algorithm.

4.5.2 Artificial immune network algorithm

This subsection provides a short outline of the artificial immune network algorithm and
its application in the robot soccer domain. A general introduction concerning artificial
immune systems, its biological background and its main algorithms can be found at [22].
Jerne defines an artificial immune network as a mathematical model in which the immune
system can be viewed as a network of interacting cells [23]. In order to understand the
immune network algorithm and the structure of its implementation, it is necessary to
clarify a number of metaphors:

1. Antigens (i.e. pathogens) are cells which invaded a (vertebrate) body, e.g. virus.
In the context of robot soccer, an antigen is the representation of the current state
of the robot which is simply a vector consisting of information about the world on
fixed point in time t.

2. Antibodies are produced as an reaction of the immune systems against pathogens.
They represent the (pre-defined and fixed) possible actions which can be selected
from the robot at any point of time.

3. Affinity function is a function which calculates the degree of stimulation (match)
between the current antigen and each antibody. They can be implemented with a
fuzzy inference system as shown in [24].

4. T-helper cells control the process of proliferation1 with stimulation and suppression.
They can be used in order to implement reinforcement learning algorithms as done

1Proliferation is the process of adapting and cloning antibodies

36

in [25].

Referring to the immune network theory, the number of antigens are determined
trough stimulation of the antigens and inter-depend stimulation and suppression of the
other types of antibodies. The following differential equation 4.1 computes the rate of
change of the antibody concentration at a fixed point of time t [24].

dAi

dt
= (

NAb∑
l=1

mst
il al(t)−

NAb∑
k=1

msu
ki ak(t) + mi − ki)ai(t) (4.1)

ai(t) =
1

1 + exp(0.5−Ai(t))
(4.2)

NAb means the number of types of antibodies. Ai and ai are concentration and
stimulus of the i-th type of antibody, i,l and k subscripts to distinguish between several
types of antibodies. ki models a natural death rate of antibodies in the absence of any
interaction, mi refers to the affinity between antigen and each type of antibody, mst

il and
msu

ki are showing the stimulative and the suppressive interaction respectively between
antibodies. The antibody with the highest concentration represents the selected action
at time t [24]. Equation 4.2 is part of the Jernes immune network model and stabilizes
the dynamics of the system[22].

4.5.3 Optimizing the parameters

Another main issue of our research work is it to find out which actions are successful
against certain types of play. For example, which actions should be preferable selected
against dribbling teams. Therefore, a fixed reference behavior has to be determined. The
AIN2-controller based behavior plays against the specified reference behavior in simula-
tion. The adaption of the AIN-controller is performed through parameter optimization3

over time. The objective function for the optimization can be composed of score, spatial
and temporal distribution of the ball on the field. One execution of the objective function
is a fixed time in the game.
The result of the optimization depends on the reference behavior, it is likely that each
type of play needs another set of parameters. Furthermore, the repertoire of basic behav-
iors (which means antibodies or actions that can be selected) has a significant influence
on the result.

2artificial immune network
3the parameters of the AIN are the affinity functions, the degree of interdependent stimulation and

inhibition of the types of antibody and the death rate parameter

37

Chapter 5

Conclusion and Outlook

The Nao Devils Dortmund is a team from the TU Dortmund University with roots in
several other teams which have competed in RoboCup competitions over the last years. In
RoboCup 2010 the second round robin pool has been reached, missing the quarter finals
by a close shave. The 10th place was achieved in the ranking of Technical Challenges
2010.

Experience from this years competition has revealed that much more tackling is in-
volved during games than in last year’s tournament. Thus for next year the Nao Devils
will focus on the development of more sophisticated team play behavior. By adding visual
robot detection the opponent awareness and avoidance should be greatly complemented.
Also it’s planned to integrate the briefly proposed multi target tracking approach into
the behavior to allow a more strategical positioning and advanced tactical play of the
robots. A more advanced team ball localization should help the ball detection even dur-
ing crowded situations on the field. In addition part of the focus will still lie on motion
generation, refining and extending the existing walking algorithms and further develop
the path planning and motion execution.

38

Appendix A

Getting Started

A.1 Setting up the development environment

The framework can be compiled on windows and linux operating systems.

A.1.1 Windows

1. Install Visual Studio 2008 Professional or Visual Studio 2010.

2. Install Cygwin 1.7.5 1 or higher. Use the ’install from internet’ option (see fig-
ure A.1). When coming to the screen “Cygwin Setup - Select Packages” switch the
view to “Full” and add the following additional packages (see figure A.2): bash,
libxml2, libxslt, make, openssh, python, ruby, rsync

3. Furthermore, the following directories have to be added to the PATH variable in your
system environment: C:\cygwin\lib and C:\cygwin\bin (if you have not installed
cygwin into that directory, change it accordingly).

4. Unzip the code release source package to a directory of your choice.

5. Set up the cross compiler: Copy the folder <coderelease directory>/Util/i586-
opennao-linux-gnu into the Cygwin directory (e.g. /home/user/ or /usr/cross com-
piler). Open the file ’g++’ which is located at <coderelease directory>/Make/crosstool
and the change the path of CXX to the cross compiler directory like that: CXX=/usr/i586-
opennao-linux-gnu/bin/i586-opennao-linux-gnu-g++.exe.

6. You should now be able to compile code for the robot. Open NDevils.sln, it includes
several projects for Simulator, libbhuman and the ndevils main program.

7. Additional software is needed to connect with and load files onto the robot. We rec-
ommend using Putty (http://www.chiark.greenend.org.uk/~sgtatham/putty/
download.html) as a remote console interface and WinSCP (http://winscp.net/
eng/download.php) as SCP client software.

8. If you want to change the parameters of the Dortmund Walking Engine you may
need Matlab 2007a or higher including the Control System Toolbox.

39

http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html
http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html
http://winscp.net/eng/download.php
http://winscp.net/eng/download.php

Figure A.1: Cygwin Setup.

Figure A.2: Installing additional Cygwin packages.

40

A.1.2 Linux

You can use any Linux distribution as well to compile the robot code. Simply unzip the
source package into a directory of your choice. Like in the windows setup, bash, ruby, gnu
make, ssh, rsync, an xslt parser software and python have to be installed. Adapt the g++
file as described at the windows section. Switch to the Make directory of the coderelease
directory and run make (e.g. with the parameters <Nao|libbhuman|Behavior|SpecialActions>
Config=<Debug|Release>). The Linux makefiles for each project are generated automat-
ically with zbuild. Note that the Simulator can not be compiled under Linux Platforms.

A.1.3 Build configurations

Our code release consists of two different build configurations, RELEASE and DEBUG.
The DEBUG configuration makes it possible to connect with SimRobot. The actual
state of the robot can be shown and modified. Running the robot with the DEBUG
configuration will result in frame drops which means that the Cognition and Motion
thread can not be executed stable at 33 Hz and 100 Hz respectively. Use RELEASE
when high performance is required. The RELEASE configuration ignores every source
which is needed for debugging except Profiling features.

A.2 Setting up the robot

Setting up the robot to run the newly compiled code consists of several steps. The memory
sticks of the Nao V3+ robots needs to be flashed once for each robot as described in the
following section. Each time a different user works with a robot he needs to set up his
configuration (see section A.2.2). Section A.2.3 and A.2.4 finally describe how to run and
debug code on the robot.

A.2.1 Preparing the memory stick

Linux is required in order to set up a new stick for the Nao robot. This only needs to be
done once per robot.

1. Download opennao-robocup-1.6.13-nao-geode.ext3.gz from the Aldebaran website
and copy it into /images of the Install folder (or use -i ¡image.ext3¿).

2. Plug the flashstick in your pc USB socket.

3. Run ./flash-and-install.sh as an administrator, e.g.: sudo ./flash-and-install.sh un-
der Ubuntu.

The script uses Connman to connect the wireless LAN. Therefore, a few more steps
are needed to configure the wireless connection:

1. After flash-and-install.sh is executed, the Nao should be booted with the new USB-
stick and a connected network cable.

2. Press the chest button of the Nao in order to get the current IP of the robot.

41

3. Open the IP with a browser from a PC which is in the same network as the robot
(user:nao pw:yourpass).

4. Use the webinterface to change the robot’s name and connect to your local wireless
LAN.

5. Connect to the robot via ssh (user:root pw:yourpass) and execute ./firstStart.sh
which removes unneeded services (not including the webinterface) and changes the
autoload.ini .(This process can be reverted, by executing ./reset2Aldebaran.sh)

6. Reboot the Nao. The setup process is finished.

A.2.2 Copying your current code and configuration to the robot

Multiple users working with the same robot often need different configurations or code,
so it is important to have an automated process to make sure every necessary file on the
robot is up to date. This copyfiles script makes it easy to set up the robot. All needed
files are copied into the designated directories.

Parameter Bedeutung

-r <robotname> set robotName
-u <username> set the username (name of the configuration files di-

rectory)
-l <location> set location (e.g. useful for different colortables)
-t <color> set team color to blue or red
-p <number> set player number. Note that two parallel operated

robots shpuld not have the same robot number.
-d delete remote cache first

Table A.1: Parameters of the copyfiles script

Examples: copyfiles.sh [Debug|Release] [<IP address>|(-m n <iP address>)*] (i.e.
./copyfiles.sh Debug 134.102.204.229 -p 1).

A.2.3 Starting and stopping the robot

Starting and stopping the NAO can be proceeded as follows:

1. Switch on the robot (press the chest button).

2. Wait until the eye LEDs are switched off.

3. Open Putty and connect to the robot.

4. The framework and NaoQi are booted by default. The connection with SimRobot
will work better if you reboot both. To shut down / boot up the framework type
./ndevils stop or ./ndevils start respectively. Starting/Stopping NaoQi is done by
typing nao stop / nao start. All Boot Scripts are located at /root on the stick.

5. Type halt to shut down the robot.

42

A.2.4 How to connect with the robot and debug

SimRobot can be used to connect with the robot. Simply, you have to modify the file
connect.con which is located under <Coderelease>/Config/Scenes. Replace the IP ad-
dress in the command sc Remote 192.168.1.2. Boot up SimRobot and open the Scene
RemoteRobot.con.
The following table shows a set of basic Simulator commands which are useful for debug-
ging purposes.

Parameter Description

log start starts recording a logfile.
log stop stops recording a logfile.
log save <filename> save the actual log to a specified file. The saved

file is located at <Coderelease>/Config/Logs.
vi image raw Transmits uncompressed raw images from the

robot to the Simulator.
vid raw representation:
<class>: <element>

draws recognized elements on the image view. It
is useful in order to determine if the robot detects
balls, goal posts etc.

vf worldState creates a worldState view on which additional 2D
information can be drawn

vfd worldState representation:
<class>: <element>

draws elements on the worldState view. This can
be e.g. ball percepts, robot poses etc.

Table A.2: Parameters of the copyfiles script

A detailed description of SimRobot and its commands can be found in [7] chapter 8.
Please consult the manual for creating a colortable as well.

A.2.5 Using the XABSL Debug Tool

The XABSL debug logging can be activated in the ’behavior.cfg’ file which can be found
on the robot under ’[your Config]/Locations/[your location]’. Now create the directory
for the log(s) : the debug tool expects a ’Logs’ folder in your config folder on the robot.
As the last step add logging for your XABSL symbols by editing the respective .cpp file
as following :

• For static symbols (e.g. constant symbols or field symbols) add a method
debugLogStatics() to your c++ symbol files (see Listing A.1).

• For every-frame-updated symbols add a debugLog() and debugLogPrintTitle()
method to your c++ smybol files (see Listing A.2).

43

/∗∗ S t a t i c Debug Symbol Logging ∗∗/
void ConstantSymbols : : debugLogStat ics ()
{

DebugSymbolsLog : : pr intStat i cSymbol (” cons tant s . p i ” , p i) ;
DebugSymbolsLog : : pr intStat i cSymbol (” cons tant s . max pan” ,maxPan) ;
DebugSymbolsLog : : pr intStat i cSymbol (” cons tant s . min pan” ,minPan) ;
// . . and so on

}

Listing A.1: ”static symbol logging”

/∗∗ ColumnCaption − only once per l o g ∗∗/
void LocatorSymbols : : debugLogPrintTit le ()
{

DebugSymbolsLog : : p r i n t (” l o c a t o r . pose . x”) ;
DebugSymbolsLog : : p r i n t (” l o c a t o r . pose . y”) ;
DebugSymbolsLog : : p r i n t (” l o c a t o r . pose . ang le ”) ;
// . . and so on

}

/∗∗ Every Frame Logging ∗∗/
void LocatorSymbols : : debugLog ()
{

DebugSymbolsLog : : p r i n t (robotPose . t r a n s l a t i o n . x) ;
DebugSymbolsLog : : p r i n t (robotPose . t r a n s l a t i o n . y) ;
DebugSymbolsLog : : p r i n t (getPoseAngle ()) ;
// . . and so on

}

Listing A.2: ”every frame symbol logging”

44

Appendix B

Framework

The German Team Framework [6] was chosen to be the basis for all code being written.
Since both B-Human and the Microsoft Hellhounds were using variations or predecessors
of this framework large amounts of already available modules (e.g. ImageProcessing,
BallModelling) could be ported rapidly and with ease. A more detailed description of the
most recent version of this framework can be found in [7].

The framework itself is based on a modular structure. A module can be seen as a pos-
sible solution for a certain task. This could either be self-localization, image-processing
or something else. Modules can be exchanged at runtime which simplifies the compar-
ison and evaluation of different solutions for a specific task. The coupling between the
modules is created by so called representations which can either be required or provided
by a specific module. The modules itself are grouped in so called processes. For now
there exist only two processes. The motion process encapsulates all modules concerning
the generation of motion trajectories. This includes for example the WalkingEngine or
the SpecialActionEngine. The cognition process however contains modules for imagepro-
cessing, localization and bahavior control. The data exchange between the framework
processes is done via means of Inter-Process Communication. For now the data is ex-
changed via a shared-memory system.

B.1 Modules

As mentioned before modules are the essential elements of the framework. A module
consists of three parts:

• the module interface

• its actual implementation

• a statement that allows to instantiate the module.

The module interface defines the name of the module, the representations required by the
module to operate and the representations it provides/modifies. This interface basically
creates a basis for the actual implementation. An example module definition can be seen
in listing B.1.

45

/∗∗ Module De f i n i t i on ∗∗/
MODULE(DemoImageProcessor)

/∗∗ Needs Image Representa t ion ∗∗/
REQUIRES(Image)
/∗∗ Needs CameraMatrix Representa t ion ∗∗/
REQUIRES(CameraMatrix)
/∗∗ Needs FrameInfo Representa t ion ∗∗/
REQUIRES(FrameInfo)
/∗∗ Provides Bal lModel Representa t ion ∗∗/
PROVIDES(BallModel)
/∗∗ Provides PointsPercept Representa t ion
wi th debugg ing c a p a b i l i t i e s ∗∗/
PROVIDESWITHMODIFY AND OUTPUT(PointsPercept)

ENDMODULE

Listing B.1: ”Example Module Definition”

The actual implementation of the module is done in a class derived from the module
definition. The implementation has class-wide read-only access to the required repre-
sentations. For each provided representation an update method with a reference to the
representation as parameter has to be implemented (e.g. void update(BallModel&)).

At last the module needs to be instantiated, this is done via a call to MAKE MODULE,
which takes a category as its second parameter allowing to specify a category for debugging
purposes. Listing B.2 shows as an example how to implement an module from the previous
module definition.

B.2 Representations

Representations are used to exchange data between modules. They are essentially light
weight data structures, which only contain the necessary information needed and provided
by a module. Additionally all representations must implement an serialization interface
called Streamable which on the one hand enables the exchange of data between framework
processes and on the other hand is used for debugging purposes. Listing B.3 shows an
example Representation.

B.3 Origin of Modules

The code released together with this report is based on the most recent version of the
GermanTeam framework originating from the code release by BHuman in 2009. As
described earlier this is used due to the Nao Devils’ history both in the GermanTeam and
the BreDoBrothers. Most of the code related to infrastructure and framework-internals
is left unchanged. The modules containing cognition and motion algorithms however are
mostly developed in Dortmund. An overview about the origins of these modules is given
in tables B.1 and B.2. Infrastructure modules, e.g. those containing the code to obtain
images and sensor readings or to read or write joint angles, are omitted in those tables.

46

/∗∗ Module Implementation ∗∗/
/∗∗ Implement DemoImageProcessor de r i v ed from Module De f i n i t i on ∗∗/
class DemoImageProcessor : public DemoImageProcessorBase
{

void update (BallModel& pBallModel)
{

// update the Bal lModel r e p r e s en t a t i on
}
void update (PointsPercept& pPointsPercept)
{

// update the PointsPecept r e p r e s en t a t i on
}

} ;

/∗∗ Module I n s t a n t i a t i o n ∗∗/
/∗∗ I n s t a n t i a t e Module DemoImageProcessor

in ca tegory ” ImageProcessing ” ∗∗/
MAKEMODULE(DemoImageProcessor , ImageProcess ing)

Listing B.2: ”Example module implementation and instantiation”

Modules with origin in “Bremen” are kept from the BHuman code release for various
reasons, because they were either kept from the BreDoBrothers cooperation (e.g. the Par-
ticleFilterBallLocator), equivalent in function (as the RobotModelProvider [7] compared
to the EgoModelProvider [26]) or providing new functionality (as the ObstacleModel-
Provider for the sonar filtering). Origin “Dortmund” indicates Nao Devils’ developments
or late Microsoft Hellhounds code. “GermanTeam” marks those parts of the code which
were not necessarily in this exact modul form, but nevertheless date back to 2005 or before
and were developed together by the GermanTeam of which both Bremen and Dortmund
have been members.

47

class Bal lPercept : public Streamable
{

/∗∗ Streaming func t i on
∗ @param in streaming in
∗ @param out streaming out
∗/
void s e r i a l i z e (In∗ in , Out∗ out)
{

STREAM REGISTER BEGIN() ;
STREAM(pos i t i onInImage) ;
STREAM(radiusInImage) ;
STREAM(ballWasSeen) ;
STREAM(r e l a t i v ePo s i t i onOnF i e l d) ;
STREAM REGISTER FINISH () ;

}

public :
/∗∗ Constructor ∗/
Bal lPercept () : ballWasSeen (fa l se) {}
/∗∗< The po s i t i o n o f the b a l l in the curren t image ∗/
Vector2<double> pos i t i onInImage ;
/∗∗< The rad ius o f the b a l l in the curren t image ∗/
double radiusInImage ;
/∗∗< Ind i ca t e s , i f the b a l l was seen in the current image . ∗/
bool ballWasSeen ;
/∗∗< Ba l l p o s i t i o n r e l a t i v e to the robo t . ∗/
Vector2<double> r e l a t i v ePo s i t i onOnF i e l d ;

} ;

Listing B.3: ”Example module implementation and instantiation”

48

Table B.1: Motion Module Overview
Module Function Origin

ArmAnimator Controls arm movement in Dortmund
Walking Engine

Dortmund

HeadMotionEngine Controls head movements GermanTeam
GroundContactDetctor Checks ground contact (used in Inertia

Matrix)
Bremen

InertiaMatrixProvider Calculates the basis for the Camera
Matrix (previous CameraMatrix calcu-
lation dates back to the GermanTeam)

Bremen

LimbCombinator Puts leg- and armjointrequest from
Dortmund Walking Engine together

Dortmund

MotionCombinator Combines requests from all motion
modules to create a final joint request

GermanTeam

MotionSelector Switches between motion types GermanTeam
NaoKinematic Inverse kinematic chain calculations Dortmund
PatternGeneratorModule Creates the footsteps for Dortmund

Walking Engine
Dortmund

RequestTranslatorModule Creates a pattern request from desired
movement speed/target

Dortmund

RobotModelProvider Provides informations about the robot
model (this module is equivalent to
the EgoModelProvider [26] and kept in-
stead of porting the latter)

Bremen

SpecialActions provides special action (hardcoded mo-
tions)

GermanTeam

ZMPIPControllerModule Controls ZMP while walking (older ver-
sion)

Dortmund

ZMPIPControllerModule2009 Controls ZMP while walking (in use) Dortmund
ZMPModelProvider Calculates ZMP used in Dortmund

Walking Engine
Dortmund

49

Table B.2: Cognition Module Overview
Module Function Origin

CameraMatrixProvider Provides the transformation from cam-
era to the robot coordinate frame (a
slight change in the functionality re-
quires the InertiaMatrix now)

GermanTeam

MSHImageProcessor Provides the basic scanning routines de-
scribed in section 3.1

Dortmund

BodyContourProvider Provides a projection of the body con-
tour to the camera image

Bremen

BallPerceptor Verifies the detection of possible balls
given certain ball candidates

GermanTeam

NDLineFinder2 Finds field lines, crossings and the cen-
ter circle as described in section 3.2

Dortmund

NDContextProcessor Extends the information of certain per-
cepts using context of others

Dortmund

ParticleFilterBallLocator Estimates the ball position (used since
BreDoBrothers 2008)

Bremen

ObstacleModelProvider Models obstacles in a local coordinate
system based on sonar readings

Bremen

UKFSampleTemplateGenerator Provides regions of high localization
probability based on recent percepts
only

Dortmund

MultiUKFSelfLocator Self localization of the robot as de-
scribed in section 3.3

Dortmund

Predictor Transforms certain models into a co-
ordinate system based on the point at
which behavior decisions take effect (see
section 4.1)

Dortmund

BehaviorControl XABSL behavior control (see section 4) GermanTeam

50

Appendix C

Walking Engine Parameters

In this section the most important parameters to control the Walking Engine are de-
scribed. They can be found in the file <coderelease directory>/Config/walkingParams.cfg.
Some parameters needed by the ZMP/IP-Controller are located in the file <coderelease
directory>/Util/Matlab/NaoV3.m. The Matlab script writeParamsV3.m calculates the
values used by the ZMP/IP-Controller using the parameters in this file and stores the re-
sults to <coderelease directory>/Config/Robots/<robot name>/ZMPIPController.dat.
To execute the script open Matlab, change the current directory to
<coderelease directory>/Util/Matlab and enter the following command:

writeParamV3(NaoV3(’<robot name>’))

All values are expressed in SI units, unless otherwise stated.

C.1 File walkingParams.cfg

The file walkingParams.cfg consists of the following parameters:

footPitch

To avoid hitting the ground with the forward section of the foot an offset is applied to
the foot rotation around the y axis. The added value reaches its maximum at the middle
of the single support phase. The maximum can be set using footPitch.

xOffset

The center of the feet can be shifted along the x axis by setting this value unequal to 0.
This offset is constant for the whole walk.

stepHeight

Maximum z position of the foot during the single support phase, see section 2.1.4.

51

sensorControlRatio

The sensorControlRatio is multiplied with the difference between the target ZMP and the
measured ZMP. Legal values are [0 . . . 1], where 0 means ‘no sensor control’ and 1 ‘full
sensor control’.

doubleSupportRatio

Proportion of the double support phase during a step.

crouchingDownPhaseLength, startingPhaseLength, stoppingPhaseLength

These values define the duration of the transitions between a walk and special actions.

armFactor

The movement of an arm depends on the x coordinate of the opposite foot. The x
coordinate is multiplied with armFactor and applied to the ShoulderPitch.

arms1

This value is the angle of ShoulderRoll for both arms. It is constant during the walk.

zmpSmoothPhase

To avoid hard sensor feedback during transitions from special actions to walk and vice
versa the ZMP error is faded in and out. This parameters sets the length in frames of
this phase.

maxSpeedXForward, maxSpeedXBack, maxSpeedYLeft, maxSpeedYRight,
maxSpeedR

These values define the maximum speed. All requests sent to the Walking Engine are
clipped to these values.

stepDuration

The PatternGenerator defines the footsteps based on two single support phases and two
double support phases. The duration of all together is the stepDuration.

footYDistance

Distance between the feet.

stopPosThresholdX, stopPosThresholdY, stopSpeedThresholdX, stopSpeed-
ThresholdY

Stopping a walk and executing a special action is only possible when the Walking Engine
sets a flag which indicates that it does not compromise the stability. The Walking Engine
uses this 4 indicators to check if the speed of the center of mass is low enough and the
position within a stable range.

52

outFilterOrder

Before sending the angles to the robot they are low-pass filtered. This parameter defines
the order of the filter.

sensorDelay

The sensor control relies on a good comparison between the measured ZMP and the target
ZMP. In most cases the measurements are some frames old and must be compared with
the target of the same frame.

maxFootSpeed, fallDownAngle

The Walking Engine has an integrated check for instabilities to avoid breaking joints.
Due to the sensor control the robot can react in an unexpected way resulting in very fast
movements. The maximum speed of the feet can be limited by using maxFootSpeed. Ad-
ditionally all movements are stopped immediately when the robot exceeds the maximum
tilt or roll angle defined by fallDownAngle.

polygonLeft, polygonRight

As mentioned in section 2.1.3 the reference ZMP is calculated using a Bézier curve.
This parameters define the y coordinates of the control points in the corresponding foot
coordinate system.

offsetLeft, offsetRight

Due to high torques acting on the joints during the single support phase large angle errors
can be observed. To compensate the effects a constant offset is added to each leg joint
which can be configured using these parameters.

walkRequestFilterLen

To avoid abrupt speed changes a low-pass filter can be activated to filter the incoming
speed requests. A value of 1 means deactivated.

maxAccX, accDelayX, maxAccY, accDelayY, maxAccR, accDelayR

Besides the low-pass filter there is an other way to limit speed changes. If the acceleration
resulting from the new speed request is higher than maxAcc only maxAcc is applied until
accDelay frames are elapsed.

speedApplyDelay

This is the third way to limit speed changes. If a speed change has been detected further
speed changes are ignored for speedApplyDelay frames.

53

legJointHardness

The stiffness parameter for the leg joints. The stiffness cannot be set for each leg sepa-
rately.

heightPolygon

This five values are multiplied with stepHeight to get the z coordinates of the control
polygon for the swinging leg as explained in section 2.1.4.

C.2 File NaoV3.m

The following parameters can be found in the file NaoV3.m:

g

The Gravity.

z h

Target height of the center of mass over the ground.

dt

Length of one frame.

R

Controller-Parameter R [13].

N

Duration of the preview phase as explained in section 2.1.2.

Qx

Controller-Parameter Qx [13].

Qe

Controller-Parameter Qe [13].

Ql

Gain for calculating L [13].

RO

Gain for calculating L [13].

54

path

Path to the file ZMPIPController.dat.

55

Bibliography

[1] Czarnetzki, S., Kerner, S.: Nao Devils Dortmund Team Description for RoboCup
2009. In Baltes, J., Lagoudakis, M.G., Naruse, T., Shiry, S., eds.: RoboCup 2009:
Robot Soccer World Cup XII Preproceedings, RoboCup Federation (2009)

[2] Czarnetzki, S., Hebbel, M., Kerner, S., Laue, T., Nisticò, W., Röfer, T.: BreDoBroth-
ers Team Description for RoboCup 2008. In Iocchi, L., Matsubara, H., Weitzenfeld,
A., Zhou, C., eds.: RoboCup 2008: Robot Soccer World Cup XII Preproceedings,
RoboCup Federation (2008)

[3] Hebbel, M., Nisticò, W., Kerkhof, T., Meyer, M., Neng, C., Schallaböck, M.,
Wachter, M., Wege, J., Zarges, C.: Microsoft hellhounds 2006. In: RoboCup 2006:
Robot Soccer World Cup X RoboCup Federation, RoboCup Federation (2006)

[4] Röfer, T., Brunn, R., Czarnetzki, S., Dassler, M., Hebbel, M., Jüngel, M., Kerkhof,
T., Nisticò, W., Oberlies, T., Rohde, C., Spranger, M., Zarges, C.: Germanteam
2005. In Bredenfeld, A., Jacoff, A., Noda, I., Takahashi, Y., eds.: RoboCup 2005:
Robot Soccer World Cup IX Preproceedings, RoboCup Federation (2005)

[5] Czarnetzki, S., Hebbel, M., Nisticò, W.: DoH!Bots Team Description for RoboCup
2007. In: RoboCup 2007: Robot Soccer World Cup XI Preproceedings. Lecture
Notes in Artificial Intelligence, Springer (2007)

[6] Röfer, T., Laue, T., Weber, M., Burkhard, H.D., Jüngel, M., Göhring, D., Hoffmann,
J., Altmeyer, B., Krause, T., Spranger, M., Schwiegelshohn, U., Hebbel, M., Nisticó,
W., Czarnetzki, S., Kerkhof, T., Meyer, M., Rohde, C., Schmitz, B., Wachter, M.,
Wegner, T., Zarges, C., von Stryk, O., Brunn, R., Dassler, M., Kunz, M., Oberlies,
T., Risler, M.: GermanTeam RoboCup 2005. Technical report (2005) Available
online: http://www.germanteam.org/GT2005.pdf.

[7] Röfer, T., Laue, T., Müller, J., Bösche, O., Burchardt, A., Damrose, E., Gillmann,
K., Graf, C., de Haas, T.J., Härtl, A., Rieskamp, A., Schreck, A., Sieverdingbeck, I.,
Worch, J.H.: B-human team report and code release 2009 (2009) Only available on-
line: http://www.b-human.de/file_download/26/bhuman09_coderelease.pdf.

[8] Laue, T., Spiess, K., Röfer, T.: Simrobot - a general physical robot simulator and
its application in robocup. In Bredenfeld, A., Jacoff, A., Noda, I., Takahashi, Y.,
eds.: RoboCup 2005: Robot Soccer World Cup IX. Number 4020 in Lecture Notes
in Artificial Intelligence, Springer; http://www.springer.de/ (2006) 173–183

56

http://www.germanteam.org/GT2005.pdf
http://www.b-human.de/file_download/26/bhuman09_coderelease.pdf

[9] Vukobratovic, M., Borovac, B.: Zero-moment point – Thirty five years of its life.
International Journal of Humanoid Robotics 1 (2004) 157–173

[10] Kajita, S., Kanehiro, F., Kaneko, K., Fujiwara, K., Yokoi, K., Hirukawa, H.: Biped
walking pattern generator allowing auxiliary zmp control. In: IROS, IEEE (2006)
2993–2999

[11] Kajita, S., Kanehiro, F., Kaneko, K., Fujiwara, K., Harada, K., Yokoi, K., Hirukawa,
H.: Biped walking pattern generation by using preview control of zero-moment point.
In: ICRA, IEEE (2003) 1620–1626

[12] Katayama, T., Ohki, T., Inoue, T., Kato, T.: Design of an optimal controller for
a discrete-time system subject to previewable demand. International Journal of
Control 41 (1985) 677 – 699

[13] Czarnetzki, S., Kerner, S., Urbann, O.: Observer-based dynamic walking control for
biped robots. Robotics and Autonomous Systems 57 (2009) 839–845

[14] Czarnetzki, S., Kerner, S., Urbann, O.: Applying dynamic walking control for biped
robots. In: RoboCup 2009: Robot Soccer World Cup XIII. Lecture Notes in Artificial
Intelligence, Springer (2010) 69 – 80

[15] Czarnetzki, S., Kerner, S., Hegele, M.: Odometry correction for humanoid robots
using optical sensors. In: RoboCup 2010: Robot Soccer World Cup XIV. Lecture
Notes in Artificial Intelligence, Springer (2011) to appear

[16] Hebbel, M., Kruse, M., Nisticò, W., Wege, J.: Microsoft hellhounds 2007. In:
RoboCup 2007: Robot Soccer World Cup XI Preproceedings, RoboCup Federation
(2007)

[17] Nisticò, W., Hebbel, M.: Temporal smoothing particle filter for vision based au-
tonomous mobile robot localization. In: Proceedings of the 5th International Con-
ference on Informatics in Control, Automation and Robotics (ICINCO). Volume
RA-1., INSTICC Press (2008) 93–100

[18] Quinlan, M.J., Middleton, R.H.: Multiple model kalman filters: A localization
technique for robocup soccer. In: RoboCup 2009: Robot Soccer World Cup XIII.
Lecture Notes in Artificial Intelligence, Springer (2010) 276–287

[19] Czarnetzki, S., Kerner, S., Kruse, M.: Real-time active vision by entropy minimiza-
tion applied to localization. In: RoboCup 2010: Robot Soccer World Cup XIV.
Lecture Notes in Artificial Intelligence, Springer (2011) to appear

[20] Czarnetzki, S., Rohde, C.: Handling heterogeneous information sources for multi-
robot sensor fusion. In: Proceedings of the 2010 IEEE International Conference on
Multisensor Fusion and Integration for Intelligent Systems (MFI 2010), Salt Lake
City, Utah (2010) 133 – 138

[21] Lötzsch, M., Bach, J., Burkhard, H.D., Jüngel, M.: Designing agent behavior with
the extensible agent behavior specification language XABSL. In Polani, D., Brown-
ing, B., Bonarini, A., eds.: RoboCup 2003: Robot Soccer World Cup VII. Volume
3020 of Lecture Notes in Artificial Intelligence., Padova, Italy, Springer (2004) 114–
124

57

[22] Castro, L.N.d.: Artificial Immune Systems: A New Computational Intelligence
Approach. Springer-Verlag, London (2002)

[23] Jerne, N.K.: The immune system. Scientific American 229 (1973) 52–60

[24] Luh, G.C., Wu, C.Y., Liu, W.W.: Artificial immune system based cooperative
strategies for robot soccer competition. In: The 1st International Forum on Strategic
Technology. (2006) 76–79

[25] Wang, Y.T., You, Z.J., Chen, C.H.: Ain-based action selection mechanism for soccer
robot systems. In: Journal of Control Science and Engineering. (2009) 10p

[26] Czarnetzki, S., Kerner, S., Urbann, O., Abelev, J., Bökkerink, C., Hofmann, M.,
Ibisch, A., Jalali, K., Kuhnert, M., Ollendorf, M., Schorlemmer, P., Stumm, S., ,
Weber, M.A.: Nao devils dortmund team report for robocup 2009. Technical report,
Robotics Research Institute, TU Dortmund University (2009)

58

	Introduction
	Team Description
	Software Overview

	Motion
	Walking
	 Dortmund Walking Engine
	The ZMP/IP-Controller
	ZMP Generation
	Swinging Leg Controller

	Special Actions
	Current Research

	Cognition
	Image Processing
	Line and Circle Detection
	Localization
	Current Research
	Active Vision
	Distributed Simultaneous Localization and Robot Tracking

	Behavior
	Behavior Coordinate System
	GoTo Motion Command
	Dynamic Positioning
	Debug Tool
	Current Research
	Artificial immune network and XABSL
	Artificial immune network algorithm
	Optimizing the parameters

	Conclusion and Outlook
	Getting Started
	Setting up the development environment
	Windows
	Linux
	Build configurations

	Setting up the robot
	Preparing the memory stick
	Copying your current code and configuration to the robot
	Starting and stopping the robot
	How to connect with the robot and debug
	Using the XABSL Debug Tool

	Framework
	Modules
	Representations
	Origin of Modules

	Walking Engine Parameters
	File walkingParams.cfg
	File NaoV3.m

