
Nao Devils Dortmund

Team Report 2011

Stefan Tasse, Sören Kerner, Oliver Urbann,

Matthias Hofmann, Ingmar Schwarz

Robotics Research Institute
Section Information Technology

Contents

1 Introduction 1
1.1 Team Description . 2
1.2 Software Overview . 2

2 Motion 4
2.1 Walking . 4

2.1.1 Dortmund Walking Engine . 5
2.1.2 The ZMP/IP-Controller . 7

Sensor Feedback Sources . 7
Integration of the Measurements, a Sensor Fusion 9
Experimental Sensor Feedback Methods 10

2.1.3 ZMP Generation . 10
2.1.4 Swinging Leg Controller . 12

2.2 Kicking . 12
2.3 Special Actions . 13

3 Cognition 15
3.1 Image Processing . 15
3.2 Line and Circle Detection . 17
3.3 Localization . 19
3.4 Distributed World Modeling . 20
3.5 Current Research . 22

3.5.1 Cooperative EKF-SLAM World Modeling 23
3.5.2 Active Vision . 25
3.5.3 Colortable-less Image Processing 28

4 Behavior 31
4.1 Implementation of Collaborating Soccer Agents 33
4.2 Behavior Coordinate System . 35
4.3 GoTo Motion Command . 36
4.4 Debug Tool . 37

5 Conclusion and Outlook 42

i

A Getting Started 43
A.1 Setting up the development environment 43

A.1.1 Windows . 43
A.1.2 Linux . 45
A.1.3 Build configurations . 45

A.2 Setting up the robot . 45
A.2.1 Preparing the memory stick . 45
A.2.2 Copying your current code and configuration to the robot 46
A.2.3 Starting and stopping the robot . 46
A.2.4 How to connect with the robot and debug 47
A.2.5 Using the XABSL Debug Tool . 47

B Framework 49
B.1 Modules . 49
B.2 Representations . 50
B.3 Origin of Modules . 50

C Walking Engine Parameters 55
C.1 File walkingParams.cfg . 55
C.2 File NaoNG.m . 58

ii

Chapter 1

Introduction

Competitions such as the RoboCup provide a benchmark for the state of the art in the
field of autonomous mobile robots and provide researchers with a standardized setup to
compare their research. Additionally the RoboCup Standard Platform League does not
only provide researchers with a common setup, but also with the same hardware platform
to use. This renders increased importance to publications of those teams, since extensive
documentation and especially releasing source code allows other researchers to compare
results and methods, reuse and improve them, and to further common research goals.

In the course of this report some of the points of the robot software and current the
research approach of the RoboCup team Nao Devils are described. An overview about
the Nao Devils software is given in section 1.2. This software has been used in the
competitions in 2011 and is also included in the code release that is published along with
this report1. This code release contains the complete code used by team Nao Devils during
the RoboCup 2011, but the behavior and the tuned walking parameters are replaced by
a more basic version. Also contained are the developed tools, out of which the behavior
debug tool is described in detail in section 4.4.

Stable motions are of crucial importance in the context of biped robots. Thus, the
following chapter of the document will describe the motion control process emphasizing
the Dortmund Walking Engine which has been the first closed loop walking engine ap-
plied to the Nao in RoboCup 2008, 2009 and 2010. The version of RoboCup 2010 was
able to reach walking speeds of up to 44cm/s, which is, to our knowledge, the highest
speed yet achieved with the robot Nao. Incidentally this speed exceeds the “theoretical
maximum walking speed” given by Aldebaran in an earlier specification by almost 50%.
For RoboCup 2011, a lot of effort was put into the development of a walk that is able to
cope with a higher center of mass that results into the mitigation of the problem of quickly
overheating joints. Another important task was to reduce the intensity of oscillations of
the body that occur during the movement of the robot.

Chapter 3 focuses on the perception processes of the Nao while section 4 presents the
concepts and ideas for the implementation of the robots behavior that includes extensions
to the XABSL specification of previous years. In each of those chapters 2, 3 and 4 the
solutions currently in use are described in detail and further references supplied when
appropriate, but also the current research is presented. This includes concepts that

1http://www.irf.tu-dortmund.de/nao-devils/download/2011/NDD-CodeRelease2011.zip

1

http://www.irf.tu-dortmund.de/nao-devils/download/2011/NDD-CodeRelease2011.zip

were already successfully applied and evaluated, but haven’t found their way into the
competition code for RoboCup 2011 for various reasons, as well as concepts currently
under development. Chapter 5 summarizes those current research topics and the current
development process for 2012.

The appendix provides further information and tutorials about how to set up the
development environment and the robot (appendix A), use the given software frame-
work (appendix B), and about the parametrization of the presented walking engine (ap-
pendix C).

1.1 Team Description

The Nao Devils Dortmund are a RoboCup team by the Robotics Research Institute of TU
Dortmund University participating in the Standard Platform League since 2009 [1] as the
successor of team BreDoBrothers, which was a cooperation of the University of Bremen
and the TU Dortmund University [2]. The team consists of numerous undergraduate
students as well as researchers. The senior team members of Nao Devils Dortmund have
already been part of the teams Microsoft Hellhounds [3] (and therefore part of the German
Team [4]), DoH! Bots [5] and BreDoBrothers.

The Team was actively participating in the RoboCup events during the last range.
Major successes were the 3rd places in RoboCup 2009, GermanOpen 2009 and the 2nd
place in RoboCup 2011. The Team also participated in all technical challenges in these
years while reaching the 3rd in RoboCup 2009. Besides official RoboCup competitions
the Nao Devils regularly participate at other international events such as the Festival
della Creatività in Florence, Italy, the RoboCup Exhibition and Engagement Event in
Eisteddfod of Wales, UK, and the Athens Digital Week in Greece. It is also planned to
take part in the Standard Platform League of RoboCup 2012 in Mexico City, Mexico.

1.2 Software Overview

The software package used by team Nao Devils consists of a robotic framework, a simu-
lator and different additional tools.

The framework, running on the Nao itself, is based on the German Team Framework
[6]. The latest version, released by team B-Human2, was used as a basic structure in 2010
and 2011, replacing the motion, vision and behavior modules by team Nao Devils’ own
versions (see appendix B.3 for details about the origin of each module). The framework
communicates with NaoQi using the libBHuman, completely separating it from Alde-
baran’s software modules. Support for Microsoft Visual Studio 2008 is included, using a
cross compiler to generate native code for the Linux running on the Nao. For a short in-
troduction and overview on the framework see appendix B. A more into depth description
can be found in [7].

To test developments in simulation, the software SimRobot was used instead of com-
mercial alternatives, such as Webots from Cyberbotics3. Being open source offers great
advantage, allowing to adapt the code to own developments. In addition having the
feature to directly connect to the robot and debug online (see appendix A.2.4) is very

2http://www.b-human.de/file_download/27/bhuman09_coderelease.tar.bz2
3http://www.cyberbotics.com/

2

http://www.b-human.de/file_download/27/bhuman09_coderelease.tar.bz2
http://www.cyberbotics.com/

convenient during development. SimRobot [8] is a kinematic robotics simulator developed
in Bremen which (like Webots) utilizes the Open Dynamics Engine4 (ODE) to approxi-
mate solid state physics. Using update steps of up to 1 kHz for the physics engine enabled
the possibility of realistic simulated walking experiments closely matching the gait of the
real robot. It also features realistic camera image generation including effects like motion
blurring, rolling shutter, etc.

Since B-Human’s team report 2009 [7] covers the basics and usage of the simulator in
great depth, a detailed description in exclude from this report. For further details please
refer to [7] chapter 8.

To visualize behavior the adapted XABSL editor of the German Team as well as the
Java reimplementation 5, done by team Nao Team Humbolt are used. Since debugging
behavior running on the real robot can be really difficult to comprehend, team Nao Devils
developed a XABSL debug tool. A logging mechanism records all XABSL decisions online
during gameplay. With help of the XABSL debug tool, developed by team Nao Devils,
these logs can be combined with a video file, to analyze and replay robots decisions. A
detailed description of this tool can be found in section 4.4.

4http://www.ode.org/
5http://www.naoteamhumboldt.de/projects/xabsleditor/

3

http://www.ode.org/
http://www.naoteamhumboldt.de/projects/xabsleditor/

Chapter 2

Motion

The main challenge of humanoid robotics certainly are the various aspects of motion
generation and biped walking. Dortmund has participated in the Humanoid Kid-Size
League during Robocup 2007 as DoH! Bots [5] and before in RoboCup 2006 as the joint
team BreDoBrothers together with Bremen University. Hence there has already been
some experience in the research area of two-legged walking even before participating in
the Nao Standard Platform League of 2008 as the rejoined BreDoBrothers.

The kinematic structure of the Nao has some special characteristics that make it
stand out from other humanoid robot platforms. Aldebaran Robotics implemented the
HipYawPitch joints using only one servo motor. This fact links both joints and thereby
makes it impossible to move one of the two without moving the other. Hence the kinematic
chains of both legs are coupled. In addition both joints are tilted by 45 degrees. These
structural differences to the humanoid robots used in previous years in the Humanoid
League result in an unusual workspace of the feet. Therefore existing movement concepts
had to be adjusted or redeveloped from scratch. The leg motion is realized by an inverse
kinematic calculated with the help of analytical methods for the stance leg. The swinging
leg end position is then calculated with the constraint of the HipYawPitch joint needed
for the support foot. This closed form solution to the inverse kinematic problem for the
Nao has been developed in Dortmund and used since RoboCup 2008 when other teams
as well as Aldebaran themselves still used iterative approximations.

2.1 Walking

In the past different walking engines have been developed following the concept of static
trajectories. The parameters of these precalculated trajectories are optimized with algo-
rithms of the research field of Computational Intelligence. This allows a special adaption
to the used robot hardware and environmental conditions. Approaches to move two legged
robots with the help of predefined foot trajectories are common in the Humanoid Kid-Size
League and offer good results. Nonetheless with such algorithms directly incorporating
sensor feedback is much less intuitive. Sensing and reacting to external disturbances how-
ever is essential in robot soccer. During a game these disturbances come inevitably in the
form of different ground-friction areas or bulges of the carpet. Additionally contacts with
other players or the ball are partly unpreventable and result in external forces acting on

4

the body of the robot.
To avoid regular recalibration and repeated parameter optimization the walking al-

gorithm should also be robust against systematic deviations from its internal model.
Trajectory based walking approaches often need to be tweaked to perform optimally on
each real robot. But some parameters of this robot are subject to change during the life-
time of a robot or even during a game of soccer. The reasons could manifold for instance
as joint decalibration, wear out of the mechanical structure or thermic drift of the servo
due to heating. Recalibrating for each such occurrence costs much time at best and is
simply not possible in many situations.

The robot Nao comes equipped with the wide range of sensors capable of measuring
forces acting on the body, namely an accelerometer, gyroscope and force sensors in the
feet. To overcome the drawback of a static trajectory playback, team Nao Devils devel-
oped a walking engine capable of generating online dynamically stable walking patterns
with the use of sensor feedback.

2.1.1 Dortmund Walking Engine

A common way to determine and ensure the stability of the robot utilizes the zero moment
point (ZMP) [9]. The ZMP is the point on the ground where the tipping moment acting
on the robot, due to gravity and inertia forces, equals zero. Therefore the ZMP has to
be inside the support polygon for a stable walk, since an uncompensated tipping moment
results in instability and fall. This requirement can be addressed in two ways.

On the one hand, it is possible to measure an approximated ZMP with the acceleration
sensors of the Nao by using equations 2.1 and 2.2 [10]. Then the position of the approx-
imated ZMP on the floor is (px, py). Note that this ZMP can be outside the support
polygon and therefore follows the concept of the fictitious ZMP.

px = x− zh
g
ẍ (2.1)

py = y − zh
g
ÿ (2.2)

On the other hand it is clear that the ZMP has to stay inside the support polygon
and it is also predictable where the robot will set its feet. Thus it is possible to define the
trajectory of the ZMP in the near future. The necessity of this will be discussed later. A
known approach to make use of it is to build a controller which transforms this reference
ZMP to a trajectory of the center of mass of the robot [11]. Figure 2.1.1 shows the pipeline
to perform the transformation. The input of the pipeline is the desired translational and
rotational speed of the robot which might change over time. This speed vector is the
desired speed of the robot, which does not translate to its CoM speed directly for obvious
stability reasons, but merely to its desired average. The first station in the pipeline is
the Pattern Generator which transforms the speed into desired foot positions Pglobal on
the floor in a global coordinate system used by the walking engine only. Initially this
coordinate system is the robot coordinate system projected on the floor and reset by
the Pattern Generator each time the robot starts walking. The resulting reference ZMP
trajectory pref calculated by “ZMP Generation” (see section 2.1.3 for details) is also
defined in this global coordinate system.

5

Pattern
Generator ZMP Generation

ZMP/IP
Controller

Inverse
Kinematic

Arm
Movement

Local CoM
Calculation

Robot

Target Angles

Measured Angles
Measured ZMP

-
+

+

Swinging Leg
Controller

Footsteps

Desired
ZMP

Target
CoM

Position

Actual
CoM

Position

Complete
Foot Positions

Global CoM
Calculation

Measured Angles

Figure 2.1: Control structure visualization of the walking pattern generation process.
Data expressed in the robot coordinate system are represented by a blue line and data
expressed in the global coordinate system is represented by a red line.

6

The core of the system is the ZMP/IP-Controller, which transforms the reference ZMP
to a corresponding CoM trajectory (Rref) in the global coordinate system as mentioned
above. The robot’s CoM relative to its coordinate frame (Rlocal) is given by the framework
based on measured angles. Equation 2.3 provides the foot positions in a robot centered
coordinate frame.

Probot (t) = Pglobal (t)−Rref (t) + Rlocal (t) (2.3)

Those can subsequently be transformed into leg joint angles using inverse kinematics.
Finally the leg angles are complemented with arm angles which are calculated using the
x coordinates of the feet.

2.1.2 The ZMP/IP-Controller

The main problem in the process described in the previous section is computing the
movement of the robot’s body to achieve a given ZMP trajectory. To calculate this, a
simplified model of the robot’s dynamics is used, representing the body by its center of
mass only. The ZMP/IP-Controller uses the state vector x=(x, ẋ, p) to represent the
robot where x is the position of the CoM, ẋ the speed of the CoM and p the resulting
ZMP [10].

The system’s continuous time dynamics can be represented by

d

dt

 x
ẋ
p

 =

 0 1 0
g
zh

0 − g
zh

0 0 0

 x
ẋ
p

+

 0
0
1

 v (2.4)

where v = ṗ is the system input to change the ZMP p according to the planned target
ZMP trajectory pref . Discretizing equation 2.4 yields the system equation

x(k + 1) = A0x(k) + bv(k) (2.5)

where x(k) denotes the discrete state vector at time k∆t, v(k) denotes the controller
for the system and

A0 =

 1 ∆t 0
g
zh

∆t 1 − g
zh

∆t

0 0 1

 (2.6)

describes the system’s behavior. Details about the controller design can be found in
[12].

One important fact about the controller is, that it needs a preview of the reference
ZMP. As can be seen in figure 2.2, it is not sufficient to start shifting the CoM simul-
taneously with the ZMP. Instead the CoM has to start moving before the ZMP does.
Therefore a preview of pref is needed to be able to calculate a CoM movement leading to
a stable posture.

Sensor Feedback Sources

A humanoid robot like the Nao has multiple sensors to measure the dynamical and kine-
matical state. Using only one of those, e.g. the ZMP measured by the foot pressure

7

Figure 2.2: CoM motion required to achieve a given ZMP trajectory.

Figure 2.3: Control system with sensor feedback using an observer.

sensors or the acceleration, has some disadvantages, like noisy data or measurement de-
lays. A common way to cope with these problems is to implement a sensor fusion using
a kalman filter. Looking at the control structure of the ZMP/IP-Controller reveals that
parts of the state vector can be measured, namely the position of the center of mass
xsensor(k) and the actual ZMP psensor(k). The first can be calculated using the center of
mass positions ci of each link expressed in the coordinate frame of link i:

xsensor(k) = Tw
s (k) ·

(
1∑
l ml

·
∑
i

T s
Oi

(k) · ci ·mi

)
(2.7)

where

• s is the coordinate system of the support foot.

• w is the world coordinate system.

• Oi is the coordinate system of link i.

• mi is the mass of link i.

• T j
i (k) is the homogeneous coordinate system transformation matrix from coordinate

system i to j.

The later is the weighted average of the data measured by each pressure sensor in the
feet. In case of the Nao robot the CoP for the left psensorleft (k) and right foot psensorright (k) are
given by the API and must be combined:

8

psensor(k) =
fl (k)

F
· Tw

Ol
(k) · psensorleft (k) +

fr (k)

F
· Tw

Or
(k) · psensorright (k) (2.8)

where

• Ol, Or is the coordinate system of left and right foot respectively.

• fl (k), fr (k) is the force exerted on the left and right foot respectively.

• F = fl (k) + fr (k) is the overall force exerted on the robot.

This kind of ZMP measurement has the same limitation as the definition of the ZMP,
it is bounded to the supporting area. As a result, the ZMP will be measured at the edge
of the support area when the robot tilts. The measurement of the center of mass position
is limited in a similar way. The result of flexibilities and tolerances in the joints can be
measured, but not the result of the tilt of the robot. This is not necessarily a disad-
vantage, since it limits the reaction of the robot to disturbances to securely executable
movements, especially if the robots falls down. The limitation of the CoM measurement
also corresponds to the ZMP measurement limits.

Regarding the coordinate system transformations, there is one noticeable point. The
transformations to the world coordinate system Tw

Oi
(k) and other transformations are

seperated. The reason for that is the way of calculating. The transformations between
the coordinate systems of the links are calculated using forward kinematics and measured
angles. However, the position and orientation of the feet in the world coordinate system
cannot be measured directly. Possible sources would the self localization or the odometry
calculated by integrating the acceleration sensor, both combined with forward kinematics.
But these sources are inaccurate and lead to large noise in the measured CoM and ZMP
positions. Measurable errors during a walk are much lower than these measurement errors
and it would be not possible to react correctly. Therefore the target foot positions and
orientations given by the Pattern Generator are used for Tw

Oi
(k).

Integration of the Measurements, a Sensor Fusion

In the last chapter two measurable values of the state vector x(k) are presented. The
measurable output of the system given by equation 2.5 can now be defined as

y (k) = c · x(k)=̂

[
xsensor(k)
psensor(k)

]
(2.9)

with

c =

[
1 0 0
0 0 1

]
(2.10)

Since not the full state can be measured, an observer is needed. Figure 2.3 shows
the overall system configuration. The observer is put in parallel to the real robot and
receives the same output of the controller to estimate the behavior of the real system and
is supported by the measurements of the ZMP and the CoM. Derived from equations 2.5
and 2.9 the observer can be defined as follows:

x̂(k + 1) = A0x̂(k) + L [y(k)− cx̂(k)] + bu(k). (2.11)

9

Figure 2.4: Performance of the controller under the influence of a constant external
disturbance resulting in an error in the measured ZMP.

It can be shown, that this system is observable.1

An intuitive illustration of an observer-based controller’s performance, where the mea-
surable system output is the ZMP, is given in figure 2.4. Here a constant error for a period
of 1.5 s is simulated. This error could be interpreted as an unexpected inclination of the
ground or a constant force pushing the robot to one side. The control system incorpo-
rates this difference and compensates by smoothly adjusting the CoM trajectory, which
consequently swings more to the opposite direction.

A more detailed presentation of our past approaches and algorithms is presented in [12]
and their application to the Nao in [13].

Experimental Sensor Feedback Methods

Besides the sensor feedback realized by the ZMP/IP-Controller there are two more meth-
ods implemented. While the ZMP/IP-Controller is responsible for controlling the trans-
lation of the center of mass, the orientation is expected to be 0. This assumption is not
correct, and should be handled in another way. Therefore a module called GyroTiltCon-
troller is implemented which realizes a PID controller using the output of the gyroscope
directly to control the body roll and tilt. The gains of the controller are chosen such that
it has a damping effect on an oscillating body.

2.1.3 ZMP Generation

The ZMP Generation calculates a reference ZMP using the given foot steps. Within
the support polygon the position can be freely chosen since every position results in a
stable walk. On the x axis the ZMP proceeds with the desired speed. This results in
a movement of the center of mass with constant velocity. On the y axis the ZMP is a

1A matlab script calculating the gains can be found in the Coderelease: /Utils/Mat-
lab/writeParamNG.m.

10

x

y

x

y

Figure 2.5: The control polygon consists of 4 points per foot with constants coordinates
within the respective coordinate frame. In this example a positive x speed is assumed for
a better visualization.

2 2.5 3 3.5 4 4.5 5 5.5 6
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

Time [s]

y
[m

]

Figure 2.6: Resulting reference ZMP along the y axis.

11

Bézier curve with a control polygon of 4 points and dimension 1. The coordinate of each
point is constant within the coordinate system of the respective foot. Figure 2.5 gives an
example. In the right single support phase the control polygon is Pr = {p1, p2, p3, p4}.
The same applies to the other single support phase. In the double support phase the
control polygon consists of the points p4, p

′
1, p
′
2, p5, where p′1 and p′2 are the same point in

the middle of p4 and p5. This leads to a smooth transition between the single and double
support phases. Figure 2.6 shows the resulting reference ZMP along the y axis.

2.1.4 Swinging Leg Controller

3.7 3.8 3.9 4
0

0.005

0.01

0.015

0.02

0.025

Zeit [s]

z
[m

]

(a) Step height over time.

0 0.01 0.02
0

0.005

0.01

0.015

0.02

0.025

0.03

x [m]

z
[m

]

(b) Stepheight over x for a walk along the x
axis.

Figure 2.7: Movement of the swinging leg in the global coordinate system.

The PatternGenerator sets the foot positions on the floor. They could be imagined
like footsteps in the snow. Therefore the footpositions of the swinging leg during a
single support phase are missing. They are added by the Swinging Leg Controller which
calculates a trajectory from the last point of contact to the next utilizing a B-spline. The
control polygon consists of 9 points with 3 dimensions each. The x and y coordinates
are set along the line segment between the start and end point. The z coordinates are
increased and decreased respectively by 1

6 of the maximal step height. The z coordinate
over time can be seen in figure 2.7(a). To reduce the influence of the leg inertia the feet
are lifted and lowered at the same speed. Figure 2.7(b) shows the z coordinate over x.
The foot reaches its end position along the x axis some time before the single support
phase ends. This reduces the error if the foot hits the ground too early.

2.2 Kicking

In every SPL soccer match, whether it is for a pass or a shot on the goal, a precise kick
that can be adjusted at the last possible moment, to cover up an imprecise ball model
or a moving ball in an one on one situation, has become a necessity. Since covering all

12

possible kick angles and strengths with Special Actions (see section 2.3) is simply not
possible, a dynamic kick was needed.

Our current implementation uses the inverse kinematic from our walking engine to
move the kicking foot towards the ball. With a fast kick execution time, the stability
of the robot can hardly be ensured with any kind of reactive controller. Therefore we
concentrated on a implementation that works without a controller and still is able to
execute a stable kick with all desired angles and strengths. The kick motion needs only
one input, the kick target: a field position relative to the robot.

The main focus in the development for our kick was its stability while still being able
to kick hard. Therefore the kick process is divided into several phases (see figure 2.8):

• lean - shift the robots weight to the standing foot

• prepare - move the foot to a point near the ball

• execute - a fast straight motion towards the ball

• prepare back - back to the position after lean

• lean back - back to the original robots position (standing)

The seperation into these phases allow a parameterization of the kick which can be
adjusted and optimized easily. After the leaning process, our kick takes the relative ball
coordinates from our ball model at the beginning of the prepare phase, moves the foot
to a point in front of the ball so that the execute phase can kick the ball in one straight
move of the foot in the desired direction. For this, the kicking foot origin is placed in a
fixed distance to the ball on the the circle that this specific distance creates. Due to the
different trajectories resulting from a sidekick compared to a frontkick, seperate leaning
angles for those motions are used and, since the foot of the Nao robot is not completely
smooth or round, the kicking angle is not entirely free. Currently, the kicking angle is
limited from 0 to 25 degrees for a frontkick and from 65 to 90 degrees for a sidekick, which
is quite enough for almost any real game situation.

After the kicking foot has been brought into position, the kicking motion itself is done
before the robot begins a reverse leaning process to again ensure its stability.

2.3 Special Actions

All movements except walking and kicking are executed by playback of predefined motions
called Special Actions. These movements consist of certain robot postures called key
frames and transition times between these. Using these transition times the movement
between the key frames is executed as a synchronous point-to-point movement in the joint
space. Such movements can be designed easily by concatenating recorded key frames.

13

(a) Robot after the lean phase. (b) Robot after the prepare
phase.

(c) Robot after the execute
phase.

Figure 2.8: The Robot in the three main phases of the kick, triggered from SimRobot.

14

Chapter 3

Cognition

From the variety of Nao’s sensors only microphones, the camera and sonar sensors can
potentially be used to gain knowledge about the robot’s surroundings. The microphones
haven’t been used so far and are not expected to give any advantage. The sonar sensors
provide distance information of the free space in front of the robot and can be used for
obstacle detection. However, the usage of these sensors depends on maintaining a strictly
vertical torso or at least tracking its tilt precisely since otherwise the ground might give
false positives due to the wide conic spreading of the sound waves. Additionally, for
certain fast walk types the swinging arms were observed to generate such false positives,
too, and the sonar sensor hardware in general is currently unreliable and often does not
recover from failure once the robot has fallen down. Thus for exteroceptive perception
the robot greatly relies on its camera mounted in the head.

The following chapter describes the information flow in the cognition process starting
from image processing and its sub-tasks in section 3.1. Special focus is given to new devel-
opments since 2009, meaning an improved line and center circle detection (see section 3.2)
and a new localization module based on a multiple-hypotheses unscented Kalman filter
(see section 3.3). Finally section 3.5 gives an outlook about current research that did not
find its way into the code for RoboCup 2010, yet, but is expected to be applied in 2011.

3.1 Image Processing

The vision system used for the Nao in the RoboCups 2008 to 2011 is based on the Microsoft
Hellhounds’ development of 2007 [14]. The key idea is to use as much a-priori information
as possible to reduce both the scanning effort and the subsequent calculations needed.
To process only a small fraction of all pixels the image is scanned along scan lines of
varying length depending on the horizon’s projection in the image (see fig. 3.1). These
scan lines are projections of radial lines originating from the point on the field below
the camera center. Keeping the angular difference constant allows the implicit usage of
this information during the scanning process, optimizes transformations between image
and field coordinate systems and significantly simplifies the inter-scan-line clustering and
reasoning about detected objects. In case of ambiguity additional verification scans are
carried out. A sparse second set of horizontal scan lines is introduced to detect far goals.

All relevant objects and features are extracted with high accuracy and detection rates.

15

Figure 3.1: Image scanned along projections of radial lines on the field.

(a) Camera Image. (b) Field view.

Figure 3.2: Objects and features recognized in the camera image.

16

(a) Camera Image. (b) Field view.

Figure 3.3: Recognition of the center circle.

Since the Nao SPL is the first RoboCup league (neglecting the simulation leagues and the
Small Size League with global vision) without extra landmarks beside the goals, detecting
features on the field itself becomes more important. The detection of those is described
in more detail in the following section.

It has to be noted that all current image processing routines still depend on static
color calibration, which must be done manually at the beginning of a competition. We
hope to overcome this dependency for 2012.

3.2 Line and Circle Detection

Besides lines also their crossings (fig. 3.2(a)) and the center circle (fig. 3.3(a)) are
determined. The latter in combination with the middle line allows for a very accurate
pose estimation in the center area of the field (see fig. 3.3(b)), leaving only two possible
symmetrical positions which can be easily resolved with any goal observation. In certain
situations line crossings from the penalty area can even be used to disambiguate a left
or right goal post (see fig. 3.2). Thus instead of having to look up for the crossbar or
around for the second post the robot can focus on tracking the ball.

The input for the line and circle detection algorithm is a set of line points generated
in the main scanning routines described above. Each point annotates a position where a
scan line intersected a field line. Besides the positions both in the image and on the field
additional information are given about the gradient and the index of the scan line which
generated this line point.

The previous approach used till 2009 consisted of a clustering heuristic based on
positions and gradients to generate line fragments. This clustering has squared complexity
in the number of line points but can be computed efficiently on the Aibo/Nao in less than
1 ms. Those line fragments are fused into lines to calculate line crossings on the field. In an
intermediate step the line fragments are tested for circle tangents. The intersection of the
perpendicular bisector of each pair of fragments in field coordinates can be considered
as a center of the expected center circle. A visible center circle in the image tends to

17

(a) Detected line points linked together.
Chains might be broken due to missing
line detection in-between fragments.

(b) Field lines and resulting crossings,
including a virtual crossing (left) and a
partly unclassified one (upper right).

Figure 3.4: Forming chains out of detected line points to identify field lines.

generate several of those intersections close to each other with approximately the right
radius. The resulting center point’s precision can be improved further by projecting it to
the most likely middle line hypothesis. The existence of a suitable middle line hypothesis
is also useful to reject false positives generated from other green-white structures around
the field. This is a fast method for line and circle detection that worked well on the Aibo
since 2005 (as part of the code which won several Opens with the Microsoft Hellhounds
and the RoboCup with the German Team) and also on the Nao (with minor adaptations
in parametrization). A drawback on the current SPL field however is that the white goal
net tends to generate a number of line fragment false positives. Additionally, a significant
part of the center circle needs to be visible for reliable detection.

For 2010 the line and circle recognition has been rewritten with the goal to over-
come those problems. The implementation of this method can be found in the module
NDLineFinder2, which has been used for RoboCup 2010 and 2011. While the color infor-
mation and the general quality of the Aibo’s camera was inferior to the Nao’s, the latter
one’s in-built edge enhancement often generates artifacts around the field line edges which
in turn decrease the gradient quality when applying for example a simple Sobel operator
as done here. This is why the new approach neglects gradient information. The input line
points are linked into chains based on their originating scan lines, their relative distances,
and white color classification on at least one of the pixels between them perpendicular to
their connection. This concatenation is of linear complexity in the number of line points
in case those line points are sorted by their originating scan lines which is given due to
the scanning process itself.

Those resulting chains (as illustrated in figure 3.4) offer easy, reliable and efficient ways
to extract line fragments or circle fragments. Line fragments can be found by identifying
sub-chains exceeding a specified minimal length which comply to a given line heuristic. In
this case the average and the biggest deviation from a linear regression line fit is chosen.
In order not to evaluate new linear regressions for the addition of every new point those
sub-chains are extended as long as additional points do not violate the thresholds for the
initial line fit. In case the average or biggest error exceeds the initial line fit, a new fit is
calculated and examined, and eventually extended further.

The extraction of circle parts out of the given line point chains is done in a similar

18

(a) Detected line points linked together. (b) Classification of field line and circle
fragment.

Figure 3.5: Reliable center circle detection even when only small fragments are visible.

fashion. One possibility to do this would be to try and find a series of points with
similar non-zero curvature. This however is very prone to noise since the discretization
introduced by the pixels is of the same magnitude as the curvature itself as can be seen
in figure 3.3(a). The alternative approach taken here is the identification of trends in
the direction change of line point connections. As a first step the local tangential angle
at the line point is calculated as a smoothed value from the point and its predecessors
and successors (if available). Similar to the linear regression for line fragments sub-chains
are identified which angular changes show a trend significantly different from zero (since
zero corresponds to straight lines) with average and maximum errors below a certain
threshold. As for the line detection, recomputing the trend is only necessary for a small
subset of points belonging to a single circle fragments (indicated with red connections in
figure 3.3(a)). The points of all identified sub-chains are then used to estimate the best-fit
circle in field coordinates using the Levenberg Marquardt method. This circle percept
can be used as is or augmented with the line information to provide an orientation for the
center circle in case a suitable middle line can be identified. The results of the described
line and circle detection algorithms are shown in figure 3.3 and 3.5.

3.3 Localization

One main focus of research is on Bayesian filters, where several enhancements for real
time vision-based Monte Carlo localization systems [15] have been presented, and the
approach based on the detection of field features without using artificial landmarks has
won the “almostSLAM” Technical Challenge at RoboCup 2005 [6]. The methods used
up until RoboCup 2009 have all been based on those particle filters developed between
2005 and 2007. For RoboCup 2010 however a different approach has been developed and
used in the competitions of 2010, and also in 2011 without any modifications [16].

Inspired by [17] the basic idea was to combine the smoothness and performance of
Kalman filtering with a multi-hypothesis system. The latter is necessary to allow recovery
from huge errors due to extended periods of integrated odometry errors without correcting
through observations, or rapid unexpected position changes due to contact with other
robots or “teleportation” by human intervention. All of those issues occur in robot soccer

19

games and are amplified by the huge odometry errors inherent in fast biped walking.
A classic Kalman filter applied to localization in a SPL scenario can only be used for

position tracking, and only as long as the estimate does not deviate too much from the
true positions. Most perceptions on a SPL field are ambiguous, so the sensor update will
only be done with the most likely data association. At the same time, the perception
of field features like field line crossings is often uncertain so that L- and T-crossings can
not be distinguished (e.g. as in figure 3.4(b)). In such cases wrong associations tend to
drive the estimation further away from the true position. Recovery from such situations is
only possible when assigning huge weights (e.g. small observation covariances) to unique
perceptions like observing both goal posts in the same frame which then decreases the
robustness against false perceptions originating from the audience around the field.

This problem is addressed in [17] with a sum-of-Gaussians Kalman filter, where each
Gaussian is split into several new ones representing the results of different association
choices. Applying all possible data associations to every hypothesis generates exponential
growth which needs cutting back shortly after by applying pruning heuristics and fusing
similar Gaussians to prevent an explosion of computational complexity. Thus lots of
processing time is wasted on creating and destroying new hypothesis which are either
unlikely or very similar to the ones that already exist.

A different approach is implemented in the module MultiUKFSelfLocator. Only few
new hypotheses are generated periodically at positions with high probability based only on
recent sensor information. Those hypotheses are only updated using data that lies inside
a certain expectation threshold. Non-linearity in the sensor model is addressed using the
unscented transformation technique. Several other approximations and simplifications
result in a localization method that is an order of magnitude faster than the previously
used particle filter while providing superior localization quality and increased robustness
to false positive perceptions (see figure 3.6). A more detailed presentation of the approach
and its stochastic soundness is given in [16].

3.4 Distributed World Modeling

Current work includes robust cooperative world modeling and localization using concepts
based on multi robot SLAM [18], as well as using probabilistic physics simulation and
estimation to improve the robot’s state estimation and odometry information [19]. Keep-
ing track of the robot’s dynamic environment opens the possibility for tactical behavior
decisions beyond simple reactive behaviors which are currently in use.

The algorithm described in [18] estimates the robot’s location and the surrounding
dynamic objects simultaneously. In this joint modeling of the robot’s state a particle
filter estimates the robot’s pose. Clusters of particles are combined into super-particles
which map the dynamic environment using a number of Kalman filters. This represents
an approximation of FastSLAM and both decreases the integration of odometry error
compared to robot-centric local modeling (see figure 3.7) and allows resolving multi-
modal localization belief states using shared information. The approach even preserves
its SLAM functionality and is able to maintain a robot’s localization based on mapped
dynamic obstacles only. A detailed presentation of the approach is presented in [18].

By specifically addressing the heterogeneity of the perceived information and the need
to synchronize the estimation between the team of robots the task’s complexity can be

20

-3000 -2000 -1000 0 1000 2000 3000

-2000

-1000

0

1000

2000

GroundTruth

MultiUKF

ParticleFilter

(a) Estimated positions and ground truth on the field.

30 40 50 60 70 80 90 100 110 120
0

200

400

600

800

P
os

iti
on

 E
rr

or
 [m

m
]

30 40 50 60 70 80 90 100 110 120
0

10

20

30

40

50

Time [s]

Ab
. O

rie
nt

at
io

n
E

rro
r [

°]

MultiUKF
Partikelf ilterParticleFilter
MultiUKF

(b) Errors in pose estimation.

30 40 50 60 70 80 90 100 110 120
0

5

10

15

20

25

30

35

40

ParticleFilter
MultiUKF

Time [s]

Fr
am

e-
U

pd
at

e
[m

s]

(c) Localization runtime.

Figure 3.6: Localization of Multiple-Hypotheses UKF compared to previous particle filter
solution (which was used in RoboCup 2009). Both are running in parallel on the Nao
using the same perception as input. Ground truth is provided by a camera mounted
above the field.

21

(a) No gain for frequently observed robots. (b) Tracking of infrequently observed robots sig-
nificantly improved.

Figure 3.7: Advantage by unified (blue) compared to separate robot-centric modeling
(red).

reduced to be in the range of applicability on limited embedded platforms. This module’s
average runtime on the Nao in the configuration used on the RoboCup 2010 would have
been slightly above 20 ms which would not have allowed to keep a frame rate of 15 Hz or
even 30 Hz. Especially the switch to a motion frame rate of 100 Hz made its application
impossible. Additionally the system is based on the outdated particle filter localization
of previous years.

For 2011 parts of this distributed world modeling approach have been integrated with
the new localization system described in section 3.3. Since the UKF localization concept
does not allow the transformation of a combined estimator according to the Rao-Blackwell
theorem, the SLAM aspect can not be transferred in this case directly. In the 2011 code
used in the competitions, the SLAM aspects were not fully implemented. The ball and
robot modeling is still done in a cooperative way using the approximations described
in [18], but there has been no feedback into the localization and only a single maximum-
likelihood hypothesis is maintained at each time.

In the code release accompanying this report there is the possibility to choose between
local models, which are the result of the local aggregation of percepts (percept-buffering,
but without periodically flushing the results into the global model, and the global model
itself, which is a fusion of all distributed information. Due to the lack of feedback into a
robot’s own localization there are situations where the local model is still to be preferred.
Precisely approaching close balls for example requires accurate robot relative information
instead of the precise global position of the ball on the field. In the global model, the
ball is more precise in global coordinates, but moderate errors in a robot’s localization
would have a major impact on the relative positioning, as long as the robot’s pose is not
corrected by the distributed information, too.

3.5 Current Research

The modules and algorithms described in the previous sections 3.1 to 3.3 can all be found
in the code released together with this document. This section summarizes both current
and previous research and experiments for which the transition into the actual soccer

22

code has not been done yet but is expected to influence the code for RoboCup 2012.

3.5.1 Cooperative EKF-SLAM World Modeling

As an Open Challenge presentation at RoboCup 2011 a prototype system for an EKF-
SLAM version of the system described in section 3.4 has been presented. It differs from
the FastSLAM version described above in several aspects which will be discussed, but the
two most important points are that it is based on the currently used MultiUKFSelfLocator
(see section 3.3) and that both the localization and the EKF-SLAM extension together
are still fast enough to run on the Nao in real-time.

As in [18], the central idea of the approach is to model the localization and all the
dynamic elements of the robot’s environment in one full SLAM state, but since the local-
ization is not estimated using a particle filter, the full state can not be factorized as in
FastSLAM. So to build upon the UKF localization described above, the full state needs
to be expressed by a mean and covariance matrix in case of EKF-SLAM world model-
ing. The increase of estimation complexity by the high-dimensional state is countered
by aggregation of some of the image processing results into temporary percept-buffers.
This has two advantages: On the one hand, highly uncertain single observations can be
integrated into different models with decreased uncertainty before forwarding them to
the EKF-SLAM core algorithm. This can be used at the same time to filter out false
positives which are not confirmed by more than one single observation. Only those tem-
porary models with enough confirmation are forwarded to the distributed modeling and
deleted from the local percept-buffer. Deleting them from the percept-buffer guarantees
the stochastic independence of different observations originating from the same source
and prevents the continuous integration of odometry errors over longer periods of time.
On the other hand, a second advantage is the decrease in complexity by using the models
from the percept buffers instead of all percepts directly. At the same time, those tempo-
rary models or buffered percepts can be shared among a group of robots to cooperatively
model their environment.

This is applied to full extend with the dynamic features, i.e. the ball and other
robots. A separate localization module, in itself also a buffer integrating information
from static, known world features into a localization belief model, is used analogically to
those percept-buffers, but the state is not deleted periodically after forwarding the belief
to the SLAM part of the algorithm. This localization reflects part of the SLAM state,
and changes to this part of the SLAM state are fed back into the localization module’s
state. Thus the virtual localization measurements used to update the SLAM state are
basically the innovation introduced by new static feature observations. Therefore those
measurements are still conditionally independent from previous measurements given the
current belief state, so the Markov assumption is not violated.

Figure 3.8 illustrates a simple scenario in a simulated environment. The robots in a
team share their information for distributed cooperative modeling. Figure 3.8(b) shows
the resulting model with 2D covariance ellipses extracted from the full state. In the
following, one robot looks down and does not see any static field features any more, and
both he and the ball are teleported to another location on the field (see figure 3.9). The
use of distributed percepts and the modeling of the own pose together with the ones of
other robots and the ball position and velocity allows the robot to not only correct its
position, but also its orientation.

23

(a) Setup of the robots on the field. (b) World model generated from local and dis-
tributed information.

Figure 3.8: Scenario with a team of robots looking around and sharing perception infor-
mation to cooperatively model their environment.

(a) Scenario after teleportation of ball and
downwards-looking robot.

(b) World model generated from local and dis-
tributed information.

Figure 3.9: Following the situation in figure 3.8, one robot looks down and only sees
the ball but no landmarks, and he and the ball are teleported. The shared information
however still allows for a correction of both position and orientation of the robot.

24

This simple experiment shows the potential usefulness of such a combined modeling of
a robot’s dynamic environment and its pose in it. RoboCup SPL games contain periods
where robots are chasing the ball, approaching it for precise positioning to shoot at the
goal, or even dribbling it. During those periods odometry errors are integrated into the
robot’s localization if not countered by frequently looking up at static field features to
correct the robot’s pose estimation. If looking at the ball also allows the correction of
those odometry errors, especially the orientation, this is expected to be a clear advantage.

Future work will be to evaluate and tune the systems behavior in real soccer scenarios
in order to be able to apply it in regular games in RoboCup 2012. Further work can be
done towards extending this into a multi hypothesis system, but for this more reliable
runtime measurements have to be done first.

3.5.2 Active Vision

(a) Ambiguity close to the opponent goal which
can not be resolved by observing a single goal post
alone.

(b) The optimal viewing direction estimated from
the previous particle distribution.

Figure 3.10: Basic idea of active vision: Choosing the viewing direction which improves
the current localization the most.

A recent development comes in the form of an active vision module replacing the com-
mon strategy to simply move the robots head continuously to cover as much as possible
of the robot’s environment. Details of the approach have been presented at the RoboCup
symposium 2010 [20]. The basic idea of this new active vision module is to move the cam-
era in a way that is optimal for localization instead of just scanning the environment using
predefined trajectories (see figure 3.10). The basis for this is a particle filter localization
providing the current belief state as a particle distribution. A commonly used quality
criterion for such a belief state X is the entropy H(X). Since the true localization of
the robot is unknown, the evaluation of expected consequences of active vision decisions
needs to be based on the uncertain belief state. The sensor modeling for the (mostly
ambiguous) landmarks (visualized in figure 3.11 for two fixed positions and observations)
provides an estimation of the probability distribution P (y|u,Xt) for making observations

25

(a) Line crossing observations result in highly
multi-modal but focused distributions.

(b) Observing a goal post indicates the field half,
but distinguishing between left and right post is not
always possible.

Figure 3.11: Measurement probability distribution p(yt|xt) for different observations.
Brighter areas correspond to higher probabilities. Illustration is related to x und y with
probability integrated over ϕ.

y after executing a motion u based on the current belief state Xt. Thus a simulation of
the localization updates for each possible action can be performed and the one expected
to minimize the entropy can be chosen to be executed.

Since such simulations include considering all possible observations for all actions
for a current belief state which is expressed with a number of particles, this calculation
involves a significant computational complexity. Several approximations were considered,
implemented (if practical), and evaluated for approximation quality and speed-up:

• Using clusters instead of separate particles for entropy calculation; neglects the
particle variations inside the cluster.

• Precomputing observations in look-up table; introduces discretization error.

• Precomputing the measurement probability for each possible pose and action deci-
sion; not practical since the table size exceeds 100MB for sensible resolutions.

• Neglecting areas with low particle density.

The effects on estimation quality are visualized in figures 3.12 and 3.13. The resulting
system has a average runtime of 4.2 ms on the Nao. Comparative results of the pre-
sented approach against the previously used passive scanning are visualized in figures 3.14
and 3.15 where the robot walked to a series of points.

This module has not been used in RoboCup 2010 nor 2011. The main reason has
been the change of the localization strategy described in section 3.3. There are also some
additional issues that need to be addressed. Since the underlying particle localization
does not take into account negative information the active vision approach tends to fail
in kidnapped robot scenarios where the belief state is absolutely wrong. In this case
the active vision decision is based on incorrect data and the supposedly optimal decision
may look at areas without useful features. Since “not seeing anything” does not change

26

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

−90 −60 −30 0 30 60 90

E
xp

ec
te

d
E

nt
ro

py

Long Range (utilt = −28°)

−90 −60 −30 0 30 60 90

Short Range (utilt = −11°)

No Simplifications
Precalculated Observations

Selective Computing

(a) Expected entropy.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

−90 −60 −30 0 30 60 90

M
ea

n
E

rr
or

 [m
m

]

Long Range (utilt = −28°)

−90 −60 −30 0 30 60 90

Short Range (utilt = −11°)

Error

(b) Average error of particles.

Figure 3.12: The expected entropy and the real error of particles after executing an action
on a penalty kick position facing the center circle.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

−90 −60 −30 0 30 60 90

E
xp

ec
te

d
E

nt
ro

py

Long Range (utilt = −28°)

−90 −60 −30 0 30 60 90

Short Range (utilt = −11°)

No Simplifications
Precalculated Observations

Selective Computing

(a) Expected entropy.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

−90 −60 −30 0 30 60 90

M
ea

n
E

rr
or

 [m
m

]

Long Range (utilt = −28°)

−90 −60 −30 0 30 60 90

Short Range (utilt = −11°)

Error

(b) Average error of particles.

Figure 3.13: The expected entropy and the real error of particles after executing an action
on the removal-penalty’s return position, i.e. on the side line facing the center circle.

−2500

−2000

−1500

−1000

−500

 0

 500

 1000

 1500

 2000

 2500

−3000 −2000 −1000 0 1000 2000 3000

y
[m

m
]

x [mm]

Groundtruth
Modeled location

(a) Passive localization.

−2500

−2000

−1500

−1000

−500

 0

 500

 1000

 1500

 2000

 2500

−3000 −2000 −1000 0 1000 2000 3000

y
[m

m
]

x [mm]

Groundtruth
Modeled location

(b) Active localization.

Figure 3.14: Localization (green) versus true position (blue) of the robot while walking
to a series of target positions.

27

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 50 100 150 200 250

D
is

ta
nc

e
E

rr
or

 [m
m

]

Active
Passive

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 0 50 100 150 200 250

B
ea

rin
g

E
rr

or
 [°

]

Time [s]

Active
Passive

Figure 3.15: Position errors (in average 172 mm and 418 mm) and orientation errors (in
average 4.97◦ and 6.14◦) of localization while walking to target positions on the field for
the active and passive approach, respectively.

the particle distribution the belief state stays the same and so does the active vision
decision. For this reason the described system needs a monitoring concept switching
back to predefined scanning in such failures. Another point where different handling
becomes necessary is ball tracking, especially when done conceptually different from the
localization e.g. with a Kalman Filter, in which case the active vision decision could not
be calculated in a single uniform model.

3.5.3 Colortable-less Image Processing

As described in section 3.1, the current image processing approach provides overall good
results in terms of perception rate and computational performance, but relies on manual
color calibration. This calibration is both time consuming and susceptible to lighting
changes, i.e. it has to be adapted for smaller changes or even be redone completely. This
process takes up a considerable time during competitions, and is prone to error when done
in a hurry. A further step towards calibration free soccer robots is the implementation
of a new image processing approach which does not rely on static color calibration any
more, but instead self-calibrates during operation.

The new approach currently under development is based on a similar approach of
scanning along few distinct scan lines using state machines. The state changes still have
absolute YUV values, gradients and color classification as triggers, but take into account
that not all colors can be classified without context. The classification of the field color
(green) is done with heuristics about the appearance in the image and the expected range
in the color space. Further on, this field color classification is used as a baseline for other
colors, whose classification however is taken as ambiguous and decided in each context
separately.

First results of an implementation on the Nao promise similar detection rates with a

28

computational cost in the same range as the previous processing routines. Figure 3.16
shows the classification and detection results of the current state of the implementation.

29

(a) Dynamic classification. (b) Field scan result.

(c) Dynamic classification. (d) Field scan result.

(e) Dynamic classification. (f) Field scan result.

Figure 3.16: First results of the colortable-less image processor currently under develop-
ment. For debugging visualization, the field and ball color classification is applied to the
whole image. Along the scanlines, field lines are segmented white and marked with red
dots in the raw image, while scanned ends of the field are marked in violet. The overall
computed field border is indicated in yellow.

30

Chapter 4

Behavior

Nao Devils as well as previous Dortmund teams implemented behavior mostly by utilising
XABSL (Extensible Agent Behavior Specification Language). XABSL was developed in
its original form in 2004 using XML syntax [21] in Darmstadt and Berlin and adapted
in 2005 to its current C-like syntax and a new ruby-based compiler by the Microsoft
Hellhounds.

To this end, behavior is specified by option graphs. Beginning from the root option,
subsequent options are activated similar to a decision tree until reaching a leaf, i.e. an
option representing a basic skill like “walk” or “execute special action” which are pa-
rameterized by the calling option. Each option contains a state machine to compute the
activation decision based on a number of input symbols provided by other modules (see
section 3.1). Part of the soccer playing option graph is shown in figure 4.1 as a demon-
stration example.

The behavior is divided into a number of playing roles, namely defender, striker,
supporter and goalie. Dynamic role switching is performed between the defender, striker
and supporter role. Despite of this, the goalie can’t change its role due to the current
version of the SPL rules. Team play is based on transmitted soccer action symbols and
situational awareness. Details about the structure of the team communication can be
found in [7].

While it is possible to design complex behavior using XABSL, several tasks may
prove difficult or impossible to specify using XABSL alone, e.g. robust and efficient path
planning including obstacle avoidance and also any strategic team behavior extending be-
yond simple role switching. Therefore several possibilities were investigated to augment
XABSL: The remainder of this chapter is structured as follows: Section 4.1 gives a brief
overview of the dynamic role management and overall behavior which was successfully
applied during the RoboCup 2011 competition. Sections 4.2 and 4.3 demonstrate a de-
scription of the technical preconditions on which the current behavior implemented in
XABSL is relying on. The last Section 4.4 describes the features of the XABSL Debug
Tool which is part of the CodeRelease 2011 and provides a short user guide.

31

Figure 4.1: XABSL Option graph example.

32

4.1 Implementation of Collaborating Soccer Agents

During the last couple of years, tremendous effort has been done by team Nao Devils in
order to foster the development of more sophisticated and reliable algorithms concerning
vision, localization, distributed world modeling and motion control. Since the aforemen-
tioned processes are now usually working on a satisfactory level, the task has been more
and more shifted to the implementation of deliberated team play which is one of the most
important challenges in nowadays RoboCup competitions.

As described previously, team Nao Devils employs XABSL for even complex tasks
where every part has to gear into each other such as team play and role management.
To this end, a deliberated organization of XABSL source code and its corresponding
functionality is needed. The code organization aims to fulfill the following requirements:

• Limited code complexity: Limited code complexity in XABSL will ensure a
proper understandability of the code so that even new team members will be able
to comprehend. This can be obtained by incorporating the following overall design
paradigm: XABSL can be seen as a controller where high-level decisions are taken.
This emphasizes the need of well-defined XABSL input symbols which model the
world state as a precondition. To facilitate this, input symbols can be associated
with one abstract proposal that compresses a number of informations representing
the agents environment into one statement. For example, an input symbol could
express whether the current situation offers a shoot onto the opponent teams goal
(so called tactic symbols). A statement like this would be difficult to model within
the XABSL code. This counts especially when a set of basic information about the
current state has to be combined and formulated into conditional clauses. While
this is possible in XABSL, it should be avoided in general.

Moreover, team Nao Devils moved the code for other tasks like path planning and
obstacle avoidance to motion modules as well. This relocation of code from XABSL
to other modules simplifies behavior modeling and validation for developers in a
sense that decision making rather than basic tasks comes into focus.

• Avoiding redundancies: The code should be created and organized in a way that
allows the reuse of existing implementations as much as possible.

• Maintain- and expandability: The organization of the behavior code should
facilitate not only the supplementation of additional skills, but also modifications
of existing behavior with low efforts. This goal can be accomplished by avoiding
dependencies between options and states. To this end, behavior should be fine-
grained and loosely coupled so that changes and additions might affect only small
parts of the existing code.

• Debugging: Debugging behavior of autonomous robots often turns out as an ex-
hausting and error-prone process. The identification of errors can be accelerated by
using the XABSL Debug Tool (see also 4.4). It is important to mention that compli-
ance of the code according with the aforementioned requirements will also simplify
the development process, identification of problems and elimination of errors.

It is beneficial to organize the XABSL code in logical layers that comprise a hierarchy
in order to realize the defined requirements. Team Nao Devils successfully used the
structure which is shown in figure 4.2:

33

Figure 4.2: Organization of XABSL options

• The top level (global functions) contains all XABSL options that implement
behavior which is semantically independent from any other option and can be trig-
gered during the game at any time. This applies to the initialization of the robot,
triggering of stand-up motions when the robot has fallen over, actions that are per-
formed when the global game state has been changed (initial, ready, set, play) and
rule-compliant reaction on penalties.

• The action selection level comprises all options responsible for the decision of
taking an appropriate action in a certain situation. The current state of the soccer
agent is modeled by input symbols (e.g. distance to the ball, positions of the team
mates and the other robots, etc.). This information is used to determine and invoke
one specific basic behavior such as shooting, dribbling, passing to team mates and
repositioning.

• The layer basic behaviors consists of all skills a robot is able to execute. Each basic
behavior implements exactly one well-defined and enclosed task, which however
might still consist of a number of different motion commands. Dribbling for example
consists of approaching the ball and executing a controlled motion to drive the ball
into the desired direction.

• The set of motion control options can be combined to the lowest layer in the
hierarchy model. These options are called and parametrized from options on the
basic behavior level. They collect motion commands which are directly executed by
underlying motion modules. These modules are responsible for the joint movements
as well as other outputs such as sound and LEDs.

Despite of the previously described organization of the XABSL code, Team Nao Devils
integrated further concepts for the competition in 2011. They concern the collaboration
between the robots and are role management, tactic and soccer symbols:

34

• Changes in the role management: A major modification in the SPL was carried
out for 2011. The number of players increased from three to four players1. This
forced major changes regarding dynamic role management between the agents. In
previous years, three basic roles (keeper, supporter, striker) were defined and one
was assigned to each robot according to the position of the ball. Moreover, the roles
implied different skills and, e.g. only the striker was able to kick the ball during the
game, and the robot which should kick the ball simply got assigned the striker role.

The current role management depends on the position of the team mates on the
field and whether several parts of the field are covered. The implication between
role and associated basic behaviors is dissolved.

• Employing tactic symbols: Deliberated tactic symbols contain information about
the current state of the game (e.g. whether an agent is the nearest to ball). To
calculate this, additional input from the other agents is needed.

• Using soccer symbols: Soccer symbols show the action the robot is currently
performing, e.g. positioning, passing or kicking. This information is useful in team
play since the other agents are able to apply supporting actions. Consider an agent
which decides to pass the ball to a better positioned team mate: When the agent
is passing the ball, the team mate could move his head to the direction where the
ball is expected to roll and is able to react quickly.

In summary, team Nao Devils worked mainly on the one hand on an appropriate
XABSL code structure and on the other hand on mechanisms to improve team play
according to the changed SPL rules in 2011, especially role management. Future work
will focus on the integration of machine learning algorithms concerning individual tasks
to improve decision making.

4.2 Behavior Coordinate System

Past approaches to behavior planning of team Nao Devils were based on the robots current
view and thereby on the robot centric coordinate system. As described in chapter 2.1 the
walking engine applied by team Nao Devils is based on the concept of dynamic stability.
Thus per definition it is impossible to stop the robot at any time during the execution of
a walking motion. This problem is coped with by introducing a preview phase containing
the next planned motion which has to be executed to ensure stability. Intuitively this
corresponds to the inability to stop all motion while in the process of having one foot
lifted to bring forward when waling fast. In every case one has at least to execute the
current step to its end. But as a result a change of the walk request can only be executed
within a given time, i.e. when the current swinging foot touches the ground and the next
footstep is not yet planned into the current motion, thus resulting in a delay. This is
especially true for a complete stop, which is applied to position the robot next to the
ball. If a behavior is written to only set the target speed to zero the moment the target
position is reached, the robot tends to overshoot and is likely to stumble against the ball.

In the past this problem was dealt with by stopping the robot some time before
actually reaching the ball. But since the distance traveled after the stopping command is

1http://www.tzi.de/spl/pub/Website/Downloads/Rules2011.pdf

35

given differs depending on the speed and currently executed motion of the robot, finding
the right distance was a matter of time consuming manual tuning of the behavior and
still resulted in suboptimal results. Since XABSL itself does not address this problem, it
is solved by introducing a new coordinate system, called after preview, centered on the
expected future robot position. Actually this coordinate system is not related to a fixed
time interval in the future, but rather to a dynamic offset depending on the executed
motion or walking phase, which might also be zero in case of statically stable motions
which can be interrupted at any time.

Consequently also the representations available to the XABSL behavior module are no
longer the direct localization and tracking outputs, but those are transformed to the after
preview coordinate system. This allows the behavior to make decisions based on the exact
future state of the robot at which those behavior decisions actually have an impact. All
intermediate actions till this point will be executed independent of the current decision,
so now the decisions will be based on the correct environmental circumstances on which
this decision will be acting upon, resulting in more precise and reactive behavior planning.

When visualizing the corresponding representations (marked by “...AfterPreview”) in
SimRobot, the origin for drawing first needs to be set using the following command:

vfd worldState origin:RobotPoseAfterPreview

4.3 GoTo Motion Command

The motion commands used in previous years till RoboCup 2009 have been based on
desired speed vectors which were updated with every behavior execution. This mode of
control dates back to the AIBOs which could be controlled like omnidirectional vehicles.
Additionally for an AIBO it was sufficient to walk straight to the ball to grab and turn with
it. For humanoid robots however the the omnidirectional characteristic of the walking
generation is much less distinct, and at the same time a target position close to the ball has
to be reached with a certain target orientation which increases the difficulty for trajectory
control. While it is possible and also commonly done to generate omnidirectional walking
patterns with the walking engine described in section 2.1, for a humanoid robot such
as the Nao it is far more convenient to walk straight than it is to walk sideways. This
is reflected in the possible walking speeds in each direction. Generating smooth path
trajectories following the characteristics optimal for those described walking capabilities
is obviously not possible in an intuitive way using a state-based behavior description
language such as XABSL.

To overcome those limitations and ultimately to achieve more precision and speed
in positioning close to the ball, a more advanced approach to path planning has been
done for the Nao Devils’ robots for RoboCup 2010. The utilized Dortmund Walking
Engine is based on foot step planning (see section 2.1). In 2010, a basic behavior has
been introduced to XABSL allowing the trajectory planning to be done by the walking
engine which has much better control and feedback about the executed motion. The
motion request has been adapted accordingly to accept a target position and orientation
and different XABSL go to commands have been implemented to cover common motion
tasks.

In the current implementation of this basic behavior a target position relative to the
current behavior reference frame (compare section 4.2) can be specified. Compared to the

36

version from 2010, especially since there are now four robots on the field for each team,
it was necessary to include some kind of obstacle avoidance into our path planning.

Due to the improvements in our world state model (see 3.4) a predictive path planning
was made possible. Still, the world around the robot will be changing in a way that is
hard to predict, therefore we decided against the planning of a complete path and rather
use a potential field, which also does not take away much of our already limited computing
power.

With the target position coming from our behavior as a positive potential, the poten-
tial field is created. Then Robots from the Robotmap, the goalposts, the ball and, if the
robot is a field player, the own penalty area are added as negative potentials.

The potential of robots is, using a gaussian distribution, modeled as an ellipse, which
longer axis is aligned parallel to the line that connects the robot with its current tar-
get. This enforces a straighter path around the obstacle than it would be possible with
a circular modeling of the other robots, resulting in a overall higher speed around an
obstacle.

Within this potential field a path is constructed by using the gradient at the robot’s
position, moving a fixed length into that direction and repeating the process several times,
or until the destination is reached.

Along this path, a smoothed trajectory for the PatternGenerator (see section 2.1) is
created, that fulfills the following criteria :

• move as fast as possible towards the target,

• keep the target and obstacles in sight and

• keep the motion as smooth as possible.

A potential field itself, if used for path planning, has some drawbacks, if only the
resulting force is used as the direction for the robot to walk, especially the existence of
local minima and the possibilty of flickering trajectories.

The first problem is solved by simply merging two obstacles, that could create a local
minima into one bigger obstacle. The second problem is implicitly solved by constructing
the path and smoothing out the actual motion after that.

One of the remaining problems is the possibilty that the robot switches the side on
that he wants to avoid the obstacle, slowing down the whole evasion process. Another
problem is the inability to avoid large walls of obstacles since the path planning does
operate only locally.

Despite that, in real game situations the time to reach the robots destination when
faced with osbtacles could be reduced significantly.

The path through the potential field can be visualized using SimRobot. After setting
the origin for drawing to the behavior coordinate system as described in section 4.2, the
following command will display the corresponding drawing as can be seen in figure 4.3:

vfd worldState representation:Path

4.4 Debug Tool

Debugging programmed code is essential to identify flaws and finding solutions to errors.
This is not only true for the code of the robotic framework, but also for the behavior

37

Figure 4.3: SimRobot worldstate with path debug drawing.

code written to decide which action is most suitable regarding the current situation.
As described in section 4, team Nao Devils uses the XABSL programming language to
implement the soccer behavior. The written and compiled code of the behavior can be
executed in a simulation environment or directly on the robotic hardware.

Different kinds of debugging tools are an essential part of every programming suite
allowing to stop code during execution and get step by step information about the program
state and variables. This concept is rather practical for debugging behavior using the
simulator. Since the simulator runs both the robot code and the world simulation the
whole simulation can be stopped to have a look at the current state and decisions. This
allows to use the simulator to step frame by frame through the world state. To debug
the behavior with the simulator SimRobot [8], a view the current XABSL tree containing
XABSL symbols and variables (figure 4.4) can be displayed allowing a frame-by-frame
forward simulation. Stepping back is not possible since the framework allows no rewind.

The used simulator is a physical simulation based on the Open Dynamics Engine
(ODE). Therefore, the simulation of even one robot is a rather time consuming process
resulting in a simulation slower than real-time on most modern standard PC platforms.
Simulating a complete match including six robots decreases the framerate to numbers that
make a user observation rather difficult. Even if the simulation would run in real time the
physical simulation is insufficient to model the real world exactly. Since small situational
differences can result in big differences in behavior decision the simulation model is not
satisfactory enough to test soccer behavior more complex than basic behavior. Thus the
most important behavior debugging can not be done in the simulator but on the real
robot.

Debugging code on the real robot is quite different. The use of a breakpoint concept
to stop the program during execution would stop the motion of the robot resulting most
likely in a fall of the robot. Therefore most debugging in autonomous robotics involves
monitoring rather than breakpoint approaches. The program execution is supervised with
the help of a remote connection that broadcasts information about the program state,
sensor input and decisions. In contrast to the breakpoint approach this method allows for

38

Figure 4.4: Example of a XABSL tree.

a debugging in real game situations involving other autonomous robots but is prohibited
during tournament game play. Unfortunately the nature of the supervision process results
in a delay of information. Therefore the supervision cannot be matched exactly with the
current field situation. In addition the broadcast connection results in an disturbance of
the the normal code execution. In general the disturbance is minor in scope but can result
in timing problems. The result would be a stuttering of the robot which changes the state
that should only be monitored. Especially for debugging of robot behavior supervision of
the written code is a rather inadequate solution.

Since execution directly onto the robot is of special interest for behavior development
team Nao Devils developed a tool allowing a different debugging concept combining the
convenience of simulator debugging with code testing on the real robot. The concept is
based on logging each behavior decision during the execution. To allow a later analysis
of the logged data the corresponding sensor information is also stored in addition to each
decision. Since the complete sensor information, including the camera pictures, would
result in an unmanageable amount of data, only the resulting information about the
world model are saved.

With this stored data a playback of all behavior decisions and a debugging of decisions
on given data can be done. But an analysis of the world model is not possible, since only
the modeled gamestate is stored and cannot be compared with reality. But to allow even
that comparison a video camera can be used to record the real gamestate in a movie file.

Based in these concepts team Nao Devils developed a tool with following features:

• The robot logs its internal state machine, the required symbols and hardware com-
mands (motion, LED-Requests etc.) once per frame.

• A graphical user interface allows for an easy reading of the logfile and shows the
input/output symbols and current XABSL state tree.

39

• A 2D field view shows the modeled robot position, direction and velocity, the ball
position and the team mate positions.

• A video can be loaded and displayed. The time is synchronized manually by match-
ing known state information to the video file.

• The the behavior log can be played back, stopped, stepped through frame by frame
and rewound to interesting positions.

Figure 4.5: XABSL Debug Tool.

The tool is implemented using QT C++ as a platform independent standalone tool.
The written log (.xlg) is loaded line by line and a parser extracts the information of
the symbols and the state machine. The parser is specialized to interpret XABSL logs

40

but due to clearly defined interfaces between the interpreter and the different widgets
an adaptation to another behavior language would be possibly by changing the parser.
Additional debug views specialized for other description languages can also be added
easily.

The progress bar allows an intuitive navigation within the log file. The current frame
information is shown using the following widgets (see figure 4.5):

• Input/output Symbols-Treeview Widget: Displays an overview with all logged
symbols and their values represented in a tree. It’s possible to select specific symbols
to display more detailed information.

• Detailed Symbols Widget: All symbols selected in the Symbols-Tree-View are
shown as a table here, so that the user has a quick overview about the needed
symbols. The columns represent the symbol names, the rows represent different
frames. By highlighting current frame the user can see the chronological history
of the symbols. This is useful, if the user wants to judge the stability of a given
symbol.

• Woldstate Widget: A 2D-Field is painted, displaying the current modeled robot
position, direction, velocity and the latest ball position. This overview allows the
user to judge the internal robot world model and compare it to the reality repre-
sented by the video file.

• Video Widget: Display of the video file synchronized to the internal robot state.

• Control Widget: The user can navigate within the logfile including jump for-
ward, back step by step, play slow-motion etc.

• Statemachine Widget: This Widget shows the current option-state path.

All this is designed to enable a behavior designer to replay all the states and analyze
the decisions a robot made. It is therefore easy to find out,

• whether a decision was based on a false perception: If the robot would have correctly
seen a certain feature, it would have behaved correctly. This kind of error results
from either a false perception or wrong interpretation and modeling.

• whether the decision was based on false decisions made on correct knowledge: The
user observes a gamestate which resulted in an undesired decision. If the internal
world model matches the real world the wrong decision is a result of a decision error
or a coding bug.

The tool is still in an early state of development missing features such as synchronizing
log files of different robots to debug team decisions. But still the debugging tool has proven
helpful in replaying gamestate decisions and allowing expert programmers to judge and
debug errors thereby improving the written XABSL code. The most useful information
was thereby gained from actual tournament games which were otherwise impossible to
supervise due to the given rules.

41

Chapter 5

Conclusion and Outlook

The Nao Devils Dortmund is a team from the TU Dortmund University with roots in
several other teams which have competed in RoboCup competitions over the last years.
This team report covered a short overview of the main ideas and concepts that were
employed and successfully used in RoboCup2011 where the Nao Devils were able to take
the 2nd place with 36 obtained goals in 9 games.

One major change in the SPL rules this year was the increase of the number of players
per team by one. This greatly affected the development of team behavior with special
respect to the role management. To this end, the role management has been completely
rewritten from the scratch. It contains a paradigm change from a simple, classical role
management with three possible roles (striker, supporter and goalie) and their associated
behavior to a more sophisticated zone-depending role management that makes team play
more flexible. Experience from last years competition has also revealed that a lot of
tackling is involved during games. This emphasised the need of a deliberared strategy to
deal with very situations. The Nao Devils were successfully able to speed-up basic tasks
such as approaching and kicking the ball by improving underlying Motion and Cognition
processes with respect to precision and stability.

Another major challenge was the integration of visual robot detection that comple-
mented the awareness of opponent robots. This allowed the use of key aspects of the
distributed world modeling approach that was briefly proposed. This helped to enhance
strategical positioning, advanced tactical play of the robots and team ball localization. In
addition part of the focus will still lie on motion generation, refining and extending the
existing walking algorithms and further develop the path planning and motion execution.

42

Appendix A

Getting Started

A.1 Setting up the development environment

The framework can be compiled on windows and linux operating systems.

A.1.1 Windows

1. Install Visual Studio 2008 Professional or Visual Studio 2010.

2. Install Cygwin 1.7.5 1 or higher. Use the ’install from internet’ option (see fig-
ure A.1). When coming to the screen “Cygwin Setup - Select Packages” switch the
view to “Full” and add the following additional packages (see figure A.2): bash,
libxml2, libxslt, make, openssh, python, ruby, rsync

3. Furthermore, the following directories have to be added to the PATH variable in your
system environment: C:\cygwin\lib and C:\cygwin\bin (if you have not installed
cygwin into that directory, change it accordingly).

4. Unzip the code release source package to a directory of your choice.

5. Set up the cross compiler: Copy the folder <coderelease directory>/Util/i586-
opennao-linux-gnu into the Cygwin directory (e.g. /home/user/ or /usr/cross com-
piler). Open the file ’g++’ which is located at <coderelease directory>/Make/crosstool
and the change the path of CXX to the cross compiler directory like that: CXX=/usr/i586-
opennao-linux-gnu/bin/i586-opennao-linux-gnu-g++.exe.

6. You should now be able to compile code for the robot. Open NDevils.sln, it includes
several projects for Simulator, libbhuman and the ndevils main program.

7. Additional software is needed to connect with and load files onto the robot. We rec-
ommend using Putty (http://www.chiark.greenend.org.uk/~sgtatham/putty/
download.html) as a remote console interface and WinSCP (http://winscp.net/
eng/download.php) as SCP client software.

8. If you want to change the parameters of the Dortmund Walking Engine you may
need Matlab 2007a or higher including the Control System Toolbox.

43

http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html
http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html
http://winscp.net/eng/download.php
http://winscp.net/eng/download.php

Figure A.1: Cygwin Setup.

Figure A.2: Installing additional Cygwin packages.

44

A.1.2 Linux

You can use any Linux distribution as well to compile the robot code. Simply unzip the
source package into a directory of your choice. Like in the windows setup, bash, ruby, gnu
make, ssh, rsync, an xslt parser software and python have to be installed. Adapt the g++
file as described at the windows section. Switch to the Make directory of the coderelease
directory and run make (e.g. with the parameters <Nao|libbhuman|Behavior|SpecialActions>
Config=<Debug|Release>). The Linux makefiles for each project are generated automat-
ically with zbuild. Note that the Simulator can not be compiled under Linux Platforms.

A.1.3 Build configurations

Our code release consists of two different build configurations, RELEASE and DEBUG.
The DEBUG configuration makes it possible to connect with SimRobot. The actual
state of the robot can be shown and modified. Running the robot with the DEBUG
configuration will result in frame drops which means that the Cognition and Motion
thread can not be executed stable at 33 Hz and 100 Hz respectively. Use RELEASE
when high performance is required. The RELEASE configuration ignores every source
which is needed for debugging except Profiling features.

A.2 Setting up the robot

Setting up the robot to run the newly compiled code consists of several steps. The memory
sticks of the Nao V3+ robots needs to be flashed once for each robot as described in the
following section. Each time a different user works with a robot he needs to set up his
configuration (see section A.2.2). Section A.2.3 and A.2.4 finally describe how to run and
debug code on the robot.

A.2.1 Preparing the memory stick

Linux is required in order to set up a new stick for the Nao robot. This only needs to be
done once per robot.

1. Download opennao-robocup-1.6.13-nao-geode.ext3.gz from the Aldebaran website
and copy it into /images of the Install folder (or use -i ¡image.ext3¿).

2. Plug the flashstick in your pc USB socket.

3. Run ./flash-and-install.sh as an administrator, e.g.: sudo ./flash-and-install.sh un-
der Ubuntu.

The script uses Connman to connect the wireless LAN. Therefore, a few more steps
are needed to configure the wireless connection:

1. After flash-and-install.sh is executed, the Nao should be booted with the new USB-
stick and a connected network cable.

2. Press the chest button of the Nao in order to get the current IP of the robot.

45

3. Open the IP with a browser from a PC which is in the same network as the robot
(user:nao pw:yourpass).

4. Use the webinterface to change the robot’s name and connect to your local wireless
LAN.

5. Connect to the robot via ssh (user:root pw:yourpass) and execute ./firstStart.sh
which removes unneeded services (not including the webinterface) and changes the
autoload.ini .(This process can be reverted, by executing ./reset2Aldebaran.sh)

6. Reboot the Nao. The setup process is finished.

A.2.2 Copying your current code and configuration to the robot

Multiple users working with the same robot often need different configurations or code,
so it is important to have an automated process to make sure every necessary file on the
robot is up to date. This copyfiles script makes it easy to set up the robot. All needed
files are copied into the designated directories.

Parameter Bedeutung

-r <robotname> set robotName
-u <username> set the username (name of the configuration files di-

rectory)
-l <location> set location (e.g. useful for different colortables)
-t <color> set team color to blue or red
-p <number> set player number. Note that two parallel operated

robots shpuld not have the same robot number.
-d delete remote cache first

Table A.1: Parameters of the copyfiles script

Examples: copyfiles.sh [Debug|Release] [<IP address>|(-m n <iP address>)*] (i.e.
./copyfiles.sh Debug 134.102.204.229 -p 1).

A.2.3 Starting and stopping the robot

Starting and stopping the NAO can be proceeded as follows:

1. Switch on the robot (press the chest button).

2. Wait until the eye LEDs are switched off.

3. Open Putty and connect to the robot.

4. The framework and NaoQi are booted by default. The connection with SimRobot
will work better if you reboot both. To shut down / boot up the framework type
./ndevils stop or ./ndevils start respectively. Starting/Stopping NaoQi is done by
typing nao stop / nao start. All Boot Scripts are located at /root on the stick.

5. Type halt to shut down the robot.

46

A.2.4 How to connect with the robot and debug

SimRobot can be used to connect with the robot. Simply, you have to modify the file
connect.con which is located under <Coderelease>/Config/Scenes. Replace the IP ad-
dress in the command sc Remote 192.168.1.2. Boot up SimRobot and open the Scene
RemoteRobot.con.
The following table shows a set of basic Simulator commands which are useful for debug-
ging purposes.

Parameter Description

log start starts recording a logfile.
log stop stops recording a logfile.
log save <filename> save the actual log to a specified file. The saved

file is located at <Coderelease>/Config/Logs.
vi image raw Transmits uncompressed raw images from the

robot to the Simulator.
vid raw representation:
<class>: <element>

draws recognized elements on the image view. It
is useful in order to determine if the robot detects
balls, goal posts etc.

vf worldState creates a worldState view on which additional 2D
information can be drawn

vfd worldState representation:
<class>: <element>

draws elements on the worldState view. This can
be e.g. ball percepts, robot poses etc.

Table A.2: Parameters of the copyfiles script

A detailed description of SimRobot and its commands can be found in [7] chapter 8.
Please consult the manual for creating a colortable as well.

A.2.5 Using the XABSL Debug Tool

The XABSL debug logging can be activated in the ’behavior.cfg’ file which can be found
on the robot under ’[your Config]/Locations/[your location]’. Now create the directory
for the log(s) : the debug tool expects a ’Logs’ folder in your config folder on the robot.
As the last step add logging for your XABSL symbols by editing the respective .cpp file
as following :

• For static symbols (e.g. constant symbols or field symbols) add a method
debugLogStatics() to your c++ symbol files (see Listing A.1).

• For every-frame-updated symbols add a debugLog() and debugLogPrintTitle()
method to your c++ smybol files (see Listing A.2).

47

/∗∗ S t a t i c Debug Symbol Logging ∗∗/
void ConstantSymbols : : debugLogStat ics ()
{

DebugSymbolsLog : : pr intStat i cSymbol (” cons tant s . p i ” , p i) ;
DebugSymbolsLog : : pr intStat i cSymbol (” cons tant s . max pan” ,maxPan) ;
DebugSymbolsLog : : pr intStat i cSymbol (” cons tant s . min pan” ,minPan) ;
// . . and so on

}

Listing A.1: ”static symbol logging”

/∗∗ ColumnCaption − only once per l o g ∗∗/
void LocatorSymbols : : debugLogPrintTit le ()
{

DebugSymbolsLog : : p r i n t (” l o c a t o r . pose . x”) ;
DebugSymbolsLog : : p r i n t (” l o c a t o r . pose . y”) ;
DebugSymbolsLog : : p r i n t (” l o c a t o r . pose . ang le ”) ;
// . . and so on

}

/∗∗ Every Frame Logging ∗∗/
void LocatorSymbols : : debugLog ()
{

DebugSymbolsLog : : p r i n t (robotPose . t r a n s l a t i o n . x) ;
DebugSymbolsLog : : p r i n t (robotPose . t r a n s l a t i o n . y) ;
DebugSymbolsLog : : p r i n t (getPoseAngle ()) ;
// . . and so on

}

Listing A.2: ”every frame symbol logging”

48

Appendix B

Framework

The German Team Framework [6] was chosen to be the basis for all code being written.
Since both B-Human and the Microsoft Hellhounds were using variations or predecessors
of this framework large amounts of already available modules (e.g. ImageProcessing,
BallModelling) could be ported rapidly and with ease. A more detailed description of the
most recent version of this framework can be found in [7].

The framework itself is based on a modular structure. A module can be seen as a pos-
sible solution for a certain task. This could either be self-localization, image-processing
or something else. Modules can be exchanged at runtime which simplifies the compar-
ison and evaluation of different solutions for a specific task. The coupling between the
modules is created by so called representations which can either be required or provided
by a specific module. The modules itself are grouped in so called processes. For now
there exist only two processes. The motion process encapsulates all modules concerning
the generation of motion trajectories. This includes for example the WalkingEngine or
the SpecialActionEngine. The cognition process however contains modules for imagepro-
cessing, localization and bahavior control. The data exchange between the framework
processes is done via means of Inter-Process Communication. For now the data is ex-
changed via a shared-memory system.

B.1 Modules

As mentioned before modules are the essential elements of the framework. A module
consists of three parts:

• the module interface

• its actual implementation

• a statement that allows to instantiate the module.

The module interface defines the name of the module, the representations required by the
module to operate and the representations it provides/modifies. This interface basically
creates a basis for the actual implementation. An example module definition can be seen
in listing B.1.

49

/∗∗ Module De f i n i t i on ∗∗/
MODULE(DemoImageProcessor)

/∗∗ Needs Image Representa t ion ∗∗/
REQUIRES(Image)
/∗∗ Needs CameraMatrix Representa t ion ∗∗/
REQUIRES(CameraMatrix)
/∗∗ Needs FrameInfo Representa t ion ∗∗/
REQUIRES(FrameInfo)
/∗∗ Provides Bal lModel Representa t ion ∗∗/
PROVIDES(BallModel)
/∗∗ Provides PointsPercept Representa t ion
wi th debugg ing c a p a b i l i t i e s ∗∗/
PROVIDESWITHMODIFY AND OUTPUT(PointsPercept)

ENDMODULE

Listing B.1: ”Example Module Definition”

The actual implementation of the module is done in a class derived from the module
definition. The implementation has class-wide read-only access to the required repre-
sentations. For each provided representation an update method with a reference to the
representation as parameter has to be implemented (e.g. void update(BallModel&)).

At last the module needs to be instantiated, this is done via a call to MAKE MODULE,
which takes a category as its second parameter allowing to specify a category for debugging
purposes. Listing B.2 shows as an example how to implement an module from the previous
module definition.

B.2 Representations

Representations are used to exchange data between modules. They are essentially light
weight data structures, which only contain the necessary information needed and provided
by a module. Additionally all representations must implement an serialization interface
called Streamable which on the one hand enables the exchange of data between framework
processes and on the other hand is used for debugging purposes. Listing B.3 shows an
example Representation.

B.3 Origin of Modules

The code released together with this report is based on the most recent version of the
GermanTeam framework originating from the code release by BHuman in 2009. As
described earlier this is used due to the Nao Devils’ history both in the GermanTeam and
the BreDoBrothers. Most of the code related to infrastructure and framework-internals
is left unchanged. The modules containing cognition and motion algorithms however are
mostly developed in Dortmund. An overview about the origins of these modules is given
in tables B.1 and B.2. Infrastructure modules, e.g. those containing the code to obtain
images and sensor readings or to read or write joint angles, are omitted in those tables.

50

/∗∗ Module Implementation ∗∗/
/∗∗ Implement DemoImageProcessor de r i v ed from Module De f i n i t i on ∗∗/
class DemoImageProcessor : public DemoImageProcessorBase
{

void update (BallModel& pBallModel)
{

// update the Bal lModel r e p r e s en t a t i on
}
void update (PointsPercept& pPointsPercept)
{

// update the PointsPecept r e p r e s en t a t i on
}

} ;

/∗∗ Module I n s t a n t i a t i o n ∗∗/
/∗∗ I n s t a n t i a t e Module DemoImageProcessor

in ca tegory ” ImageProcessing ” ∗∗/
MAKEMODULE(DemoImageProcessor , ImageProcess ing)

Listing B.2: ”Example module implementation and instantiation”

Modules with origin in “Bremen” are kept from the BHuman code release for various
reasons, because they were either kept from the BreDoBrothers cooperation (e.g. the Par-
ticleFilterBallLocator), equivalent in function (as the RobotModelProvider [7] compared
to the EgoModelProvider [22]) or providing new functionality (as the ObstacleModel-
Provider for the sonar filtering). Origin “Dortmund” indicates Nao Devils’ developments
or late Microsoft Hellhounds code. “GermanTeam” marks those parts of the code which
were not necessarily in this exact modul form, but nevertheless date back to 2005 or before
and were developed together by the GermanTeam of which both Bremen and Dortmund
have been members.

51

class Bal lPercept : public Streamable
{

/∗∗ Streaming func t i on
∗ @param in streaming in
∗ @param out streaming out
∗/
void s e r i a l i z e (In∗ in , Out∗ out)
{

STREAM REGISTER BEGIN() ;
STREAM(pos i t i onInImage) ;
STREAM(radiusInImage) ;
STREAM(ballWasSeen) ;
STREAM(r e l a t i v ePo s i t i onOnF i e l d) ;
STREAM REGISTER FINISH () ;

}

public :
/∗∗ Constructor ∗/
Bal lPercept () : ballWasSeen (fa l se) {}
/∗∗< The po s i t i o n o f the b a l l in the curren t image ∗/
Vector2<double> pos i t i onInImage ;
/∗∗< The rad ius o f the b a l l in the curren t image ∗/
double radiusInImage ;
/∗∗< Ind i ca t e s , i f the b a l l was seen in the current image . ∗/
bool ballWasSeen ;
/∗∗< Ba l l p o s i t i o n r e l a t i v e to the robo t . ∗/
Vector2<double> r e l a t i v ePo s i t i onOnF i e l d ;

} ;

Listing B.3: ”Example module implementation and instantiation”

52

Table B.1: Motion Module Overview
Module Function Origin

ArmAnimator Controls arm movement in Dortmund
Walking Engine

Dortmund

HeadMotionEngine Controls head movements GermanTeam
GroundContactDetctor Checks ground contact (used in Inertia

Matrix)
Bremen

InertiaMatrixProvider Calculates the basis for the Camera
Matrix (previous CameraMatrix calcu-
lation dates back to the GermanTeam)

Bremen

LimbCombinator Puts leg- and armjointrequest from
Dortmund Walking Engine together

Dortmund

MotionCombinator Combines requests from all motion
modules to create a final joint request

GermanTeam

MotionSelector Switches between motion types GermanTeam
NaoKinematic Inverse kinematic chain calculations Dortmund
PatternGeneratorModule Creates the footsteps for Dortmund

Walking Engine
Dortmund

RequestTranslatorModule Creates a pattern request from desired
movement speed/target

Dortmund

RobotModelProvider Provides informations about the robot
model (this module is equivalent to
the EgoModelProvider [22] and kept in-
stead of porting the latter)

Bremen

SpecialActions provides special action (hardcoded mo-
tions)

GermanTeam

ZMPIPControllerModule Controls ZMP while walking (older ver-
sion)

Dortmund

ZMPIPControllerModule2009 Controls ZMP while walking (in use) Dortmund
ZMPModelProvider Calculates ZMP used in Dortmund

Walking Engine
Dortmund

53

Table B.2: Cognition Module Overview
Module Function Origin

CameraMatrixProvider Provides the transformation from cam-
era to the robot coordinate frame (a
slight change in the functionality re-
quires the InertiaMatrix now)

GermanTeam

MSHImageProcessor Provides the basic scanning routines de-
scribed in section 3.1

Dortmund

BodyContourProvider Provides a projection of the body con-
tour to the camera image

Bremen

BallPerceptor Verifies the detection of possible balls
given certain ball candidates

GermanTeam

NDLineFinder2 Finds field lines, crossings and the cen-
ter circle as described in section 3.2

Dortmund

NDContextProcessor Extends the information of certain per-
cepts using context of others

Dortmund

ParticleFilterBallLocator Estimates the ball position (used since
BreDoBrothers 2008)

Bremen

ObstacleModelProvider Models obstacles in a local coordinate
system based on sonar readings

Bremen

UKFSampleTemplateGenerator Provides regions of high localization
probability based on recent percepts
only

Dortmund

MultiUKFSelfLocator Self localization of the robot as de-
scribed in section 3.3

Dortmund

Predictor Transforms certain models into a co-
ordinate system based on the point at
which behavior decisions take effect (see
section 4.2)

Dortmund

BehaviorControl XABSL behavior control (see section 4) GermanTeam

54

Appendix C

Walking Engine Parameters

In this section the most important parameters to control the Walking Engine are de-
scribed. They can be found in the file <coderelease directory>/Config/walkingParams.cfg.
Some parameters needed by the ZMP/IP-Controller are located in the file <coderelease
directory>/Util/Matlab/NaoV3.m. The Matlab script writeParamsV3.m calculates the
values used by the ZMP/IP-Controller using the parameters in this file and stores the re-
sults to <coderelease directory>/Config/Robots/<robot name>/ZMPIPController.dat.
To execute the script open Matlab, change the current directory to
<coderelease directory>/Util/Matlab and enter the following command:

writeParamV3(NaoV3(’<robot name>’))

All values are expressed in SI units, unless otherwise stated.

C.1 File walkingParams.cfg

The file walkingParams.cfg consists of the following parameters:

footPitch

To avoid hitting the ground with the forward section of the foot an offset is applied to
the foot rotation around the y axis. The added value reaches its maximum at the middle
of the single support phase. The maximum can be set using footPitch.

xOffset

The center of the feet can be shifted along the x axis by setting this value unequal to 0.
This offset is constant for the whole walk.

stepHeight

Maximum z position of the foot during the single support phase, see section 2.1.4.

55

sensorControlRatio

The sensorControlRatio is multiplied with the difference between the target ZMP and the
measured ZMP. Legal values are [0 . . . 1], where 0 means ‘no sensor control’ and 1 ‘full
sensor control’.

doubleSupportRatio

Proportion of the double support phase during a step.

crouchingDownPhaseLength, startingPhaseLength, stoppingPhaseLength

These values define the duration of the transitions between a walk and special actions.

armFactor

The movement of an arm depends on the x coordinate of the opposite foot. The x
coordinate is multiplied with armFactor and applied to the ShoulderPitch.

arms1

This value is the angle of ShoulderRoll for both arms. It is constant during the walk.

zmpSmoothPhase

To avoid hard sensor feedback during transitions from special actions to walk and vice
versa the ZMP error is faded in and out. This parameters sets the length in frames of
this phase.

maxSpeedXForward, maxSpeedXBack, maxSpeedYLeft, maxSpeedYRight,
maxSpeedR, maxSpeedXForwardOmni

These values define the maximum speed. All requests sent to the Walking Engine are
clipped to these values.

stepDuration

The PatternGenerator defines the footsteps based on two single support phases and two
double support phases. The duration of all together is the stepDuration.

footYDistance

Distance between the feet.

stopPosThresholdX, stopPosThresholdY, stopSpeedThresholdX, stopSpeed-
ThresholdY

Stopping a walk and executing a special action is only possible when the Walking Engine
sets a flag which indicates that it does not compromise the stability. The Walking Engine
uses this 4 indicators to check if the speed of the center of mass is low enough and the
position within a stable range.

56

zmpLeft, zmpRight

Position of the target ZMP in the (left/right)foot coordinate system when the robot
stands on one leg.

outFilterOrder

Before sending the angles to the robot they are low-pass filtered. This parameter defines
the order of the filter.

tiltControllerParams, rollControllerParams

Gains for the tilt/roll PID controller params implemented in the module GyroTiltCon-
troller.

sensorDelay

The sensor control relies on a good comparison between the measured ZMP and the target
ZMP. In most cases the measurements are some frames old and must be compared with
the target of the same frame.

halSensorDelay

Delay of the hal sensors used to measure the joint angles.

maxFootSpeed, fallDownAngle

The Walking Engine has an integrated check for instabilities to avoid breaking joints.
Due to the sensor control the robot can react in an unexpected way resulting in very fast
movements. The maximum speed of the feet can be limited by using maxFootSpeed. Ad-
ditionally all movements are stopped immediately when the robot exceeds the maximum
tilt or roll angle defined by fallDownAngle.

polygonLeft, polygonRight

As mentioned in section 2.1.3 the reference ZMP is calculated using a Bézier curve.
This parameters define the y coordinates of the control points in the corresponding foot
coordinate system.

offsetLeft, offsetRight

Due to high torques acting on the joints during the single support phase large angle errors
can be observed. To compensate the effects a constant offset is added to each leg joint
which can be configured using these parameters.

walkRequestFilterLen

To avoid abrupt speed changes a low-pass filter can be activated to filter the incoming
speed requests. A value of 1 means deactivated.

57

accXAlpha

Gain controlling the acceleration sensor feedback (see section 2.1.2).

maxAccX, accDelayX, maxAccY, accDelayY, maxAccR, accDelayR

Besides the low-pass filter there is an other way to limit speed changes. If the acceleration
resulting from the new speed request is higher than maxAcc only maxAcc is applied until
accDelay frames are elapsed.

speedApplyDelay

This is the third way to limit speed changes. If a speed change has been detected further
speed changes are ignored for speedApplyDelay frames.

legJointHardness

The stiffness parameter for the leg joints. The stiffness cannot be set for each leg sepa-
rately.

heightPolygon

This five values are multiplied with stepHeight to get the z coordinates of the control
polygon for the swinging leg as explained in section 2.1.4.

standRollFactor

A factor especially for standy on one leg. Instead of reaching he target center of mass
position by translating the body, this factor allows to reach the target by rotating the
body.

C.2 File NaoNG.m

The following parameters can be found in the file NaoNG.m:

g

The Gravity.

z h

Target height of the center of mass over the ground.

dt

Length of one frame.

R

Controller-Parameter R [12].

58

N

Duration of the preview phase as explained in section 2.1.2.

Qx

Controller-Parameter Qx [12].

Qe

Controller-Parameter Qe [12].

Ql

Gain for calculating L [12].

RO

Gain for calculating L [12].

path

Path to the file ZMPIPController.dat.

59

Bibliography

[1] Czarnetzki, S., Kerner, S.: Nao Devils Dortmund Team Description for RoboCup
2009. In Baltes, J., Lagoudakis, M.G., Naruse, T., Shiry, S., eds.: RoboCup 2009:
Robot Soccer World Cup XII Preproceedings, RoboCup Federation (2009)

[2] Czarnetzki, S., Hebbel, M., Kerner, S., Laue, T., Nisticò, W., Röfer, T.: BreDoBroth-
ers Team Description for RoboCup 2008. In Iocchi, L., Matsubara, H., Weitzenfeld,
A., Zhou, C., eds.: RoboCup 2008: Robot Soccer World Cup XII Preproceedings,
RoboCup Federation (2008)

[3] Hebbel, M., Nisticò, W., Kerkhof, T., Meyer, M., Neng, C., Schallaböck, M.,
Wachter, M., Wege, J., Zarges, C.: Microsoft hellhounds 2006. In: RoboCup 2006:
Robot Soccer World Cup X RoboCup Federation, RoboCup Federation (2006)

[4] Röfer, T., Brunn, R., Czarnetzki, S., Dassler, M., Hebbel, M., Jüngel, M., Kerkhof,
T., Nisticò, W., Oberlies, T., Rohde, C., Spranger, M., Zarges, C.: Germanteam
2005. In Bredenfeld, A., Jacoff, A., Noda, I., Takahashi, Y., eds.: RoboCup 2005:
Robot Soccer World Cup IX Preproceedings, RoboCup Federation (2005)

[5] Czarnetzki, S., Hebbel, M., Nisticò, W.: DoH!Bots Team Description for RoboCup
2007. In: RoboCup 2007: Robot Soccer World Cup XI Preproceedings. Lecture
Notes in Artificial Intelligence, Springer (2007)

[6] Röfer, T., Laue, T., Weber, M., Burkhard, H.D., Jüngel, M., Göhring, D., Hoffmann,
J., Altmeyer, B., Krause, T., Spranger, M., Schwiegelshohn, U., Hebbel, M., Nisticó,
W., Czarnetzki, S., Kerkhof, T., Meyer, M., Rohde, C., Schmitz, B., Wachter, M.,
Wegner, T., Zarges, C., von Stryk, O., Brunn, R., Dassler, M., Kunz, M., Oberlies,
T., Risler, M.: GermanTeam RoboCup 2005. Technical report (2005) Available
online: http://www.germanteam.org/GT2005.pdf.

[7] Röfer, T., Laue, T., Müller, J., Bösche, O., Burchardt, A., Damrose, E., Gillmann,
K., Graf, C., de Haas, T.J., Härtl, A., Rieskamp, A., Schreck, A., Sieverdingbeck, I.,
Worch, J.H.: B-human team report and code release 2009 (2009) Only available on-
line: http://www.b-human.de/file_download/26/bhuman09_coderelease.pdf.

[8] Laue, T., Spiess, K., Röfer, T.: Simrobot - a general physical robot simulator and
its application in robocup. In Bredenfeld, A., Jacoff, A., Noda, I., Takahashi, Y.,
eds.: RoboCup 2005: Robot Soccer World Cup IX. Number 4020 in Lecture Notes
in Artificial Intelligence, Springer; http://www.springer.de/ (2006) 173–183

60

http://www.germanteam.org/GT2005.pdf
http://www.b-human.de/file_download/26/bhuman09_coderelease.pdf

[9] Vukobratovic, M., Borovac, B.: Zero-moment point – Thirty five years of its life.
International Journal of Humanoid Robotics 1 (2004) 157–173

[10] Kajita, S., Kanehiro, F., Kaneko, K., Fujiwara, K., Yokoi, K., Hirukawa, H.: Biped
walking pattern generator allowing auxiliary zmp control. In: IROS, IEEE (2006)
2993–2999

[11] Kajita, S., Kanehiro, F., Kaneko, K., Fujiwara, K., Harada, K., Yokoi, K., Hirukawa,
H.: Biped walking pattern generation by using preview control of zero-moment point.
In: ICRA, IEEE (2003) 1620–1626

[12] Czarnetzki, S., Kerner, S., Urbann, O.: Observer-based dynamic walking control for
biped robots. Robotics and Autonomous Systems 57 (2009) 839–845

[13] Czarnetzki, S., Kerner, S., Urbann, O.: Applying dynamic walking control for biped
robots. In: RoboCup 2009: Robot Soccer World Cup XIII. Lecture Notes in Artificial
Intelligence, Springer (2010) 69 – 80

[14] Hebbel, M., Kruse, M., Nisticò, W., Wege, J.: Microsoft hellhounds 2007. In:
RoboCup 2007: Robot Soccer World Cup XI Preproceedings, RoboCup Federation
(2007)

[15] Nisticò, W., Hebbel, M.: Temporal smoothing particle filter for vision based au-
tonomous mobile robot localization. In: Proceedings of the 5th International Con-
ference on Informatics in Control, Automation and Robotics (ICINCO). Volume
RA-1., INSTICC Press (2008) 93–100

[16] Jochmann, G., Kerner, S., Tasse, S., Urbann, O.: Efficient multi-hypotheses un-
scented kalman filtering for robust localization. In Röfer, T., Mayer, N.M., Savage,
J., Saranli, U., eds.: RoboCup 2011: Robot Soccer World Cup XV. Lecture Notes
in Computer Science. Springer Berlin / Heidelberg (2012) to appear

[17] Quinlan, M.J., Middleton, R.H.: Multiple model kalman filters: A localization
technique for robocup soccer. In: RoboCup 2009: Robot Soccer World Cup XIII.
Lecture Notes in Artificial Intelligence, Springer (2010) 276–287

[18] Czarnetzki, S., Rohde, C.: Handling heterogeneous information sources for multi-
robot sensor fusion. In: Proceedings of the 2010 IEEE International Conference on
Multisensor Fusion and Integration for Intelligent Systems (MFI 2010), Salt Lake
City, Utah (2010) 133 – 138

[19] Hauschildt, D., Kerner, S., Tasse, S., Urbann, O.: Multi body kalman filtering with
articulation constraints for humanoid robot pose and motion estimation. In Röfer,
T., Mayer, N.M., Savage, J., Saranli, U., eds.: RoboCup 2011: Robot Soccer World
Cup XV. Lecture Notes in Computer Science. Springer Berlin / Heidelberg (2012)
to appear

[20] Czarnetzki, S., Kerner, S., Kruse, M.: Real-time active vision by entropy minimiza-
tion applied to localization. In: RoboCup 2010: Robot Soccer World Cup XIV.
Lecture Notes in Artificial Intelligence, Springer (2011) to appear

61

[21] Lötzsch, M., Bach, J., Burkhard, H.D., Jüngel, M.: Designing agent behavior with
the extensible agent behavior specification language XABSL. In Polani, D., Brown-
ing, B., Bonarini, A., eds.: RoboCup 2003: Robot Soccer World Cup VII. Volume
3020 of Lecture Notes in Artificial Intelligence., Padova, Italy, Springer (2004) 114–
124

[22] Czarnetzki, S., Kerner, S., Urbann, O., Abelev, J., Bökkerink, C., Hofmann, M.,
Ibisch, A., Jalali, K., Kuhnert, M., Ollendorf, M., Schorlemmer, P., Stumm, S., ,
Weber, M.A.: Nao devils dortmund team report for robocup 2009. Technical report,
Robotics Research Institute, TU Dortmund University (2009)

62

	Introduction
	Team Description
	Software Overview

	Motion
	Walking
	Dortmund Walking Engine
	The ZMP/IP-Controller
	Sensor Feedback Sources
	Integration of the Measurements, a Sensor Fusion
	Experimental Sensor Feedback Methods

	ZMP Generation
	Swinging Leg Controller

	Kicking
	Special Actions

	Cognition
	Image Processing
	Line and Circle Detection
	Localization
	Distributed World Modeling
	Current Research
	Cooperative EKF-SLAM World Modeling
	Active Vision
	Colortable-less Image Processing

	Behavior
	Implementation of Collaborating Soccer Agents
	Behavior Coordinate System
	GoTo Motion Command
	Debug Tool

	Conclusion and Outlook
	Getting Started
	Setting up the development environment
	Windows
	Linux
	Build configurations

	Setting up the robot
	Preparing the memory stick
	Copying your current code and configuration to the robot
	Starting and stopping the robot
	How to connect with the robot and debug
	Using the XABSL Debug Tool

	Framework
	Modules
	Representations
	Origin of Modules

	Walking Engine Parameters
	File walkingParams.cfg
	File NaoNG.m

